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Drug Repositioning (DR) has recently emerged as a

complementary approach to classic drug discovery

aiming at challenging the limited productivity issues

associated with the traditional drug discovery route. By

seeking novel links between existing drugs and new

indications, data mining of various sources constitutes

a powerful tool for systematic DR. This review focuses

on primary literature as one of the data sources and on

Literature-Based Discovery (LBD) strategies for DR,

presenting a relevant case study for the treatment of

Multiple Sclerosis (MS).
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development for commercial reasons and, in case of approved
Introduction

De novo drug development is laborious (15–20 years) and

costly (500 million to 2 billion US dollars) [1–3]. The phar-

maceutical industry is constantly seeking for ways to dimin-

ish costs without sacrificing its productivity. By contrast, the

number of New Chemical Entities (NCEs) approved by the

Food and Drug Administration (FDA) each year remains

constant at 20–30 compounds [4]. On top of the mounting

R&D costs, pharmaceutical companies are currently under

the strain of other issues, including loss of revenue due to

patent expirations, increasingly cost-constrained healthcare

systems and regulatory hurdles [5]. All these factors have

forced the bio-pharmaceutical industry toward complemen-

tary productivity strategies, including in-licensing, merger-

and-acquisition and, finally, Drug Repositioning (DR, also
called indication expansion, indication switching, drug

repurposing or drug reprofiling) [6].

As its name implies, DR focuses on identifying new indica-

tions for existing drugs and has been employed since the first

steps of the pharmaceutical industry, mainly through clinical

observation and serendipity, with well-known examples

being sildenafil and thalidomide. DR candidates share some

common features; have either exhibited a prior lack of effi-

cacy in clinical trials (without safety issues) or stalled in

drugs, might have been subjected to patent expiry, or seen as

a market strategy in other geographical areas [7].

One would think that the witnessed explosion in high-

throughput data, particularly in the genomics field, would

lead to a burst in discovery of new drugs. However, the

number of ‘druggable targets’ [8] has not increased proportio-

nately as a result of the sequencing of the human genome. By

utilizing existing drugs for new indications, DR helps reshuf-

fle the drug target space.

DR is an appealing approach also from the patient’s per-

spective, because the repositioned drug has usually a well-

established safety profile. This confers not only significant

time gains but also reduction in attrition, because safety

concerns are by definition fewer compared to those involving

a new drug [9].

Although DR strategies can make use of a variety of data

sources and data mining approaches, here we review
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systematic literature-based DR strategies and describe the

literature part of the DR approach followed by Biovista,

including a prominent example for a repositioned drug in

Multiple Sclerosis (MS).

Technology background

Literature mining and its application in the biomedical setting

Part of the process of modern biomedical research involves

the analysis of large volumes of experimental data to identify

new patterns or correlations, ultimately leading to novel

hypotheses. Data mining methodologies have been exten-

sively used to infer knowledge from high-throughput geno-

mic, chemical, metabolic and proteomic data [10].

The scientific literature can also be thought as another

form of a data repository capturing biomedical facts and their

interrelations. With the volume of biomedical literature con-

stantly increasing, it is becoming difficult to locate, retrieve

and manage the reported information without literature

mining. Literature mining uses text mining tools to auto-

matically extract facts and possible relations, thus enabling

users to systematically generate and substantiate appropriate

hypotheses [11]. Systematic literature analysis offers a meth-

odical understanding of a disease’s underlying mechanisms

and helps monitoring areas where scientific advances are

likely to create new therapeutic opportunities [12].

New knowledge can be gained by mining the scientific

literature for direct or indirect relationships. The process of

generating novel hypotheses by linking seemingly unrelated

facts or indirect connections is commonly referred to as

Literature-Based Discovery (LBD) [13]. LBD is based on the

assumption that two ‘islands of knowledge’ A and C might

be related to each other if they share a link (in the literature,

or in other repositories of empirical data) with an intermedi-

ate concept B (Fig. 1). The term ‘ABC model’ has been coined

to describe this mode of scientific discovery through infer-

ence. The initial discoveries made by Swanson [14–16] were

based on a manual scanning of the literature; however,
A C

B
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Figure 1. Swanson’s ABC model of discovery. If concepts A and B

are reported to be related to one set of publications and concepts B

and C are reported to be related to another set, then A and C might

be indirectly related to each other.
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the immense expansion of the scientific literature has

necessitated the use of Information Extraction (IE) technol-

ogies to extract terms and concepts of interest from free-text.

IE comprises a first step of Entity Recognition (ER) to

identify biomedical terms of interest in free-text (e.g. a Med-

line abstract) and subsequently link these terms to each other

using either co-occurrence or more sophisticated Natural Lan-

guage Processing (NLP)-based methods [17,18]. Co-occurrence,

which associates terms with each other when they appear in

the same text, has been extensively used in IE systems in the

context of literature-based discoveries [17,19,20]. Although

prone to generating false positives and unable to provide

information regarding the nature of the relationship, co-

occurrence can be well applied as an exploratory component,

as it can provide associations of almost any type and does not

distinguish between direct and indirect relationships [17,21].

Another key factor for the prevalence of co-occurrence is its

robustness in the context of large-scale IE systems.

Drug discovery by systematic literature analysis

Following Swanson’s initial LBD discoveries regarding dietary

fish oil as a potential therapeutic for Raynaud’s disease [14],

numerous variations of the original ABC model have

appeared in the literature [22–25]. Notable examples include

the suggestion of thalidomide for the treatment of chronic

hepatitis C [26] and the ‘Litlinker’ approach [27] which

identified three new connections: endocannabinoids with

Alzheimer’s Disease (AD), AMPA receptors with migraine,

and secretin with schizophrenia.

Recent examples using literature mining for systematic DR

include, among others, work by Li et al. [28], which used

mined information from PubMed abstracts and molecular

interaction networks to construct drug–protein connectivity

maps. Development and application of this computational

framework were performed on AD, as a starting example,

leading to a new hypothesis that diltiazem and quinidine could

be investigated as candidate drugs for AD treatment. More-

over, Frijters et al. [29] constructed an ‘ABC’-based literature

mining tool, called ‘CoPub Discovery’, to identify novel

connections between drugs, genes and diseases. Using co-

occurrence, they created interconnections between gene

names and other biomedical concepts, which they extracted

from Medline abstracts. Co-citation strength was assessed

using a mutual information-based metric and new relations

were then validated through a series of case studies and in

vitro experiments, such as the finding that dephostatin and

damnacanthal, a tyrosine phosphatase inhibitor and a tyr-

osine kinase inhibitor, respectively, are associated with cell

proliferation. Recently, von Eichborn et al. [30] created a

network-based resource of protein–protein and protein–drug

interactions, called ‘PROMISCUOUS’, which they enriched

with side-effect and structural information data mined from

appropriate databases, aiming at providing a uniform data set
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for further analysis and a good start for DR, integrating basic

graph theoretical analysis methods.

Drug Repositioning: a Biovista case study for Multiple

Sclerosis

Information extraction

Biovista (Charlottesville, VA, USA) utilizes data mining tech-

niques to identify nonobvious relationships among drugs,

new indications and potential Adverse Drug Reactions

(ADRs). Part of Biovista’s discovery workflow is based on

Systems Literature Analysis (SLA) [31], which treats the scien-

tific literature as a vast system of interconnections between

various biomedical entities. SLA-based discovery consists of

integrated IE tools, a database of relations between biomedi-

cal entities and inferential algorithms rooted in LBD. Clinical

Outcome Search SpaceTM (COSS) is Biovista’s computational
Figure 2. Screenshot of the analysis module of Biovista’s COSS platform. The

Terms relating atorvastatin to the various diseases are shown together with th
platform which incorporates the SLA engine, as well as data

analysis and visualization tools (Fig. 2). COSS relies on an

extensive proprietary database of context-crossing relations

among biomedical entities (diseases, ADRs, drugs, com-

pounds, genes, pathways, among others), which utilizes cus-

tom technological solutions and correlational tools to

achieve high performance access to the underlying data

and their interrelations. The process is strengthened by the

integration of cheminformatics tools and related data sources

[21,32]. This enables the user not only to generate informa-

tion regarding the putative Mode of Action (MoA) of drugs in

novel indications but also to extract information regarding

potential ADRs. COSS enables Biovista to repurpose drugs and

drug targets and assess their Benefit/Risk clinical outcome

potential over the entire range of medical conditions listed

in the various Unified Medical Language System (UMLS)
Drug Discovery Today: Therapeutic Strategies

figure displays diseases related to the drug atorvastatin, as an example.

e relevant bibliography.

www.drugdiscoverytoday.com 105



Drug Discovery Today: Therapeutic Strategies | Drug repurposing Vol. 8, No. 3–4 2011
Knowledge sources. This technology is currently employed

for the development of the company’s pipeline in areas such

as central nervous system (CNS), Cardiovascular Disease,

Oncology and Auto-immune diseases.

Resources

COSS incorporates data from literature corpora such as

PubMed [33], bioinformatics databases and ontologies.

Biomedical data are retrieved from the following resources:
(a) G
F

106
enomic databases include EntrezGene [34], the Universal

Protein Resource (UniProt) [35], Protein Data Bank (PDB)

[36] and Gene Expression Atlas [37].
(b) M
icroarray repositories, such as Gene Expression Omnibus

(GEO) [38] and ArrayExpress [39].
(c) P
athway databases, such as KEGG Pathway (Kyoto Ency-

clopedia of Genes and Genomes) [40], Reactome [41] and

the National Cancer Institute (NCI)-Nature Pathway

Interaction Database [42].
(d) C
heminformatics resources, such as PubChem [43],

ChEMBL [44] and ChemSpider [45].
(e) D
rug-to-target databases include DrugBank [46],

PharmGKB [47] and MATADOR (Manually Annotated

TArgets and Drugs Online Resource) [48].
(f) D
rug-related-to-disease databases include the US Food and

Drug Administration Drugs@FDA database [49], and

others, designed to support FDA’s postmarketing safety

surveillance, such as Adverse Event Reporting System

(AERS) [50], Side Effect Resource (SIDER) [51] and Dai-

lyMed [52].
In addition, COSS exploits biomedical ontologies such as

the UMLS [53] from the US National Library of Medicine

(NLM), and the Medical Subject Headings thesaurus (MeSH)

[54], which is a controlled vocabulary for biomedical terms

also from the NLM.

Discovery

BVA-201: repositioning overview

Using the concepts laid above for SLA and COSS, Biovista has

repositioned Pirlindol (code-named to BVA-201, Fig. 3) to MS.
N

N
H
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igure 3. The chemical structure of Pirlindol.
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The drug, which is a reversible inhibitor of Monoamine

Oxidase A (RIMA), was initially approved in Russia and the

European Union for the chronic treatment of depression,

affective and psychotic disorders with a depressive compo-

nent, and of anxiety disorders. Biovista has filed patents for

BVA-201 for the treatment of MS [55].

Multiple Sclerosis: disease overview and current therapeutic

strategies

MS is an inflammatory-mediated demyelinating disorder of

the CNS of unknown etiology [56], which affects around 2.5

million people worldwide. As the disease progresses, neuro-

logical decline is evident and this is attributed to mechanisms

independent of an adaptive immune response which closely

resemble neurodegeneration. Northern Europe, the northern

United States, southern Australia and New Zealand have the

highest prevalence, with more than 30 affected cases per

100,000 people and an increased incidence in women [57].

Most MS drugs are currently targeting the inflammatory

component of the disease while not having any effect on

neurodegeneration. Although drugs in this class provide a

significant reduction in the rate of relapses (in the order of

30–67%), they are associated with mild-to-often fatal adverse

events, such as in the case of Natalizumab which induces

Progressive Multifocal Leukoencephalopathy (PML), a rare,

but life-threatening disease [58].

BVA-201, as evident from clinical trials and postmarketing

surveillance, has a very good adverse event profile in humans,

exhibiting only mild and transient adverse events including

dry mouth, increased sweating, hand tremor, tachycardia,

nausea and dizziness. In clinical practice, the drug does not

seem to interfere with the gastrointestinal tract function,

heart rate, blood pressure, ECG, water–electrolyte balance

[59]. Furthermore, the drug can be used by patients who

cannot tolerate tricyclic antidepressants, including patients

with prostate hypertrophy and glaucoma [59], and patients

with cardiovascular co-morbidities, in which it has no inter-

actions with commonly prescribed drugs [60].

Experimental validation of BVA-201 role in an animal model of

MS

Apart from acting as a MAO reversible inhibitor, the MoA of

BVA-201 involves the reduction of oxidative stress and inhi-

bition of lipid peroxidation [61,62], a process involved both

in relapsing–remitting and in the progressive forms of MS.

This behavior is not seen in other MAO inhibitors [61],

implying that the anti-oxidant effect of BVA-201 is specific

and not a generic characteristic of drugs within its class. In

in vivo experiments performed in the MOG (Myelin Oligo-

dendrocyte Glycoprotein)-induced Experimental Allergic

Encephalomyelitis (EAE) murine model of MS, BVA-201, at

30 mg/kg (a pharmaceutically relevant dose) induced a

sizeable improvement in disease progression, as represented
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Figure 4. Disease progression in an experimental model of Multiple Sclerosis. BVA-201 (30 mg/kg) induced a statistically significant reduction of

EAE severity starting on day 11 and maintained throughout the rest of the experiment (day 35). On day 35, the average score among experimental groups

was 5.10 � 2.3 in the case of the 30 mg/kg group, 4.0 � 3.1 in the positive control group, while the mean score of vehicles was 10.2 � 4.28. The difference

between the BVA-201 30 mg/kg group and the vehicle group was highly statistically significant (P < 0.01), while the difference between the BVA-201

30 mg/kg group and the positive control group was not statistically significant (P = 0.38). Lower clinical scores correspond to less severe disease.
by EAE severity clinical scores (Fig. 4). Moreover, histological

data showed that the drug’s MoA is not anti-inflammatory,

but rather, BVA-201 protects neuronal cells and myelin in a

direct manner. These observations lead to the validation of

the hypothesis involving repositioning BVA-201 for MS.

Biovista’s adverse event prediction

Along with DR, Biovista utilizes its COSS platform for pre-

dicting ADRs. Prediction of the ADRs allows improved clin-

ical trial design and optimal patient stratification during

clinical development, and can translate into better under-

standing of a compound’s risk profile, ultimately leading to

accelerated development and significant savings. Drug-

related ADR information is incorporated into COSS from

databases such as AERS and SIDER and, more importantly,

from published data.

Conclusion

DR strategies have been increasingly fruitful in recent years;

in 2009 alone, more than 30% of the 51 new medicines

launched in the market involved new indications, new for-

mulations and new combinations of previously marketed

drugs [63]. Being a cost and time saving route, DR is expected

to play an increasingly major role in the pipelines of bio-

pharmaceutical companies.

At the same time, the notion of linking an existing drug

and, hence, a known drug target to a new indication is a very
promising approach to uncover hidden connections between

previously unconnected signaling pathways, in turn, leading

to ‘novel biology’. Overlooked pathways and pharmacologi-

cal mechanisms leading to new indications are uncovered by

the drug’s ability to bind either to a known target (on-target

effect) or a ‘novel’ target for which the drug was not originally

designed for (off-target effect). Either way, for every piece of

information added to the corpus of existing scientific knowl-

edge, DR is the implement which combines prior and

acquired knowledge, thus creating a large input of data that

could readily lead to innovation.

The recent success stories of DR have spawned the creation

of several discovery programs attempting to systematize the

application of existing drugs to new indications. Among the

various platforms suggested in the literature, in silico DR based

on literature mining, seems to be a promising strategy for

such a goal. The present review has presented a compelling

DR-driven hypothesis for the use of an existing drug for a new

indication, subsequently validated in an in vivo model of the

disease.
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