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Targeting cancer metabolism has emerged as a hot topic for drug discovery. Most cancers have a high

demand for metabolic inputs (i.e. glucose/glutamine), which aid proliferation and survival. Interest in

targeting cancer metabolism has been renewed in recent years with the discovery that many cancer-

related (e.g. oncogenic and tumour suppressor) pathways have a profound effect on metabolism and that

many tumours become dependent on specific metabolic processes. Considering the recent increase in

our understanding of cancer metabolism and the increasing knowledge of the enzymes and pathways

involved, the question arises: could metabolism be cancer’s Achilles heel?

During recent years, interest into the possible therapeutic benefit of targeting metabolic pathways in

cancer has increased dramatically with academic and pharmaceutical groups actively pursuing this

aspect of tumour physiology. Therefore, what has fuelled this revived interest in targeting cancer

metabolism and what are the major advances and potential challenges faced in the race to develop new

therapeutics in this area? This review will attempt to answer these questions by summarising recent

developments in this field. We aim to illustrate why we, and others, believe that targeting metabolism

in cancer presents such a promising therapeutic rationale.
Introduction
It has been known for over half a century that tumours exhibit an

increased demand for nutrients to fuel their rapid proliferation. In

the 1920s, Otto Warburg showed that tumour slices displayed

increased rates of glucose uptake compared with normal tissues

and that, even in the presence of oxygen, tumours metabolised

glucose via oxygen-independent aerobic glycolysis rather than via

the more efficient but oxygen-dependent process of oxidative

phosphorylation [1–3]. This effect is known as the Warburg effect

and is often considered to be the foundation for much of the

research into cancer metabolism.

Processing of glucose via glycolysis only yields two ATP mole-

cules (the main carrier of cellular energy), whereas processing via

oxidative phosphorylation can yield up to 36 molecules of ATP.

This suggests that tumour metabolism of glucose is energetically

wasteful [4,5]. One key issue is to understand why tumour cells
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switch to this energetically less favourable process and how this

switch is controlled in cancer cells. Considering the complex

network of metabolic pathways, it becomes clear that glucose

supplies many key biosynthetic intermediates that are required

for the synthesis of proteins, lipids, nucleic acids and complex

sugars via pathways that branch off the core glycolytic cascade

(Fig. 1). The demand for these intermediates to fuel the growth and

proliferation of tumour cells could explain why tumours require

such a large intake of glucose.

It has also been observed that tumours have a high rate of

uptake and use of glutamine. This amino acid is processed by

the glutaminolysis pathway and supplies biosynthetic intermedi-

ates linked to amino acid and lipid synthesis. Furthermore, glu-

taminolysis can also contribute to the production of reducing

equivalents (in the form of NADPH) to combat oxidative stress

[6,7]. One possible theory is that, by supplementing their meta-

bolism with glutamine, tumours could potentially avoid produ-

cing excess levels of ATP and avoid negative feedback regulation
our’s sweet-spot, Drug Discov Today (2012), doi:10.1016/j.drudis.2011.12.017
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ACLY ATP citrate lyase
AKT v-akt murine thymoma viral oncogene
AML acute myeloid leukemia
AMPK AMP activated protein kinase
DCA dichloroacetate
DHEA dehydroepiandrosterone
FASN fatty acid synthase
FH fumarate hydratase
G6PDH glucose-6-phospahe dehydrogenase
GLS1 glutaminase
GLUT glucose transporter
HIF hypoxia inducible factor
HK2 hexokinase-2
HSP70 heat shock 70kD protein
IDH isocitrate dehydrogenase
LDHa lactate dehydrogenase-A
LKB1 liver kinase B1
MAGL monoglyceride lipase
MCT monocarboxylic acid transporter
mIDH mutant isocitrate dehydrogenase
mTOR mechanistic target of rapamycin
Myc v-myc myelocytomatosis viral oncogne homolog
NADH nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
NAMPT nicotinamide phosphoribosyltransferase
p53 tumour protein p53
PDH pyruvate dehydrogenase
PDK1 pyruvate dehydrogenase kinase isoenzyme 1
PFK1 6-phosphofructose-1-kinase
PFK2 6-phospho-2-kinase/fructose-2,6-bisphosphatase
PHD HIF prolyl 4-hydroxylase
PHGDH 3-phosphoglycerate dehydrogenase
PI3K phosphoinositide 3-kinase
PKM2 pyruvate kinase muscle-2
PPP pentose phosphate pathway
PTEN phosphatase and tensin homolog
RAS rat sarcoma viral homolog
ROS reactive oxygen species
SDH succinate dehydrogenase
SLC5A1 solute carrier family 1 (neutral amino acid transporter)
member 5
SREBP sterol regulatory element binding protein
TIGAR TP53 induced glycolysis and apoptosis regulator
TCA tricarboxylic acid
TKT transketolase
TKTL1 transketolase like-1
VHL von Hippel-Landau tumour suppresspr
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on some metabolism pathways (such as glycolysis) that are inhib-

ited by high ATP concentrations. In this way, cancer cells can

maintain the high flux rate of glucose and glutamine in the various

biosynthetic pathways shown in Fig. 1.

Oncogenes and cancer metabolism
Despite evidence concluding that many tumours show increased

uptake and use of glucose and glutamine, progress towards har-

nessing the potential therapeutic use of these observations has

been relatively slow compared with areas of cancer research aimed

at targeting oncogenic signalling pathways. However, increased

understanding of the complex networks of oncogenic signalling

pathways has revealed that altered cellular metabolism could be
Please cite this article in press as: Jones, N.P., Targeting cancer metabolism – aiming at a tum
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one of the major routes by which oncogenes promote tumour

formation and progression (Fig. 1). These adaptations serve to

increase the metabolic flux into multiple pathways that not only

supply cellular energy (i.e. ATP) but also provide essential building

blocks for macromolecule synthesis (i.e. nucleotides, lipids, pro-

teins and complex sugars) as well as the reducing power for

biosynthetic processes and redox regulation (NADPH). The com-

plex rewiring of cellular metabolism not only fuels cell growth and

proliferation but also supports cell survival under the unfavour-

able conditions encountered within the tumour microenviron-

ment [2,5]. Some of the main oncogenic signalling pathways and

their metabolic targets are briefly discussed below, although this is

not an exhaustive treatment of the many potential links between

oncogenes and metabolism that are currently under investigation.

The gene coding for the oncogenic transcription factor c-myc is

found to be amplified in many tumours [8]. Myc has been shown

to enhance the expression of the glutamine transporter ASCT2

(SLC5A1) directly and to increase the expression of glutaminase

(GLS1) indirectly via reduction of miR23a/b, an inhibitor of

GLS1 expression [9–11]. Myc also upregulates expression of pyr-

uvate kinase (PK)M2, the isoform that is believed to be the pre-

dominant PK in cancer [12,13]. PKM2 activity is also regulated by

phosphorylation via oncogenic signalling from growth factor

receptors [14]. This phosphorylation switches PKM2 to a less

active form, thereby slowing glycolysis and allowing the flux of

glycolytic intermediates into biosynthetic pathways. Myc also

regulates expression of other metabolic genes including the glu-

cose transporter GLUT1 [15], hexokinase-2 (HK2; which retains

glucose in cells by phosphorylating it to glucose-6-phosphate)

[16,17] and lactate dehydrogenase (LDHA; which converts pyru-

vate to lactate) [16,18–20].

The PI3K/AKT pathway is one of the most commonly altered

pathways in cancer [21]. It can be activated by loss or inactivating

mutations in the tumour suppressor gene PTEN, activating muta-

tions in the PI3K complex, aberrant signalling from upstream

kinases and through overexpression of its components [21]. Once

activated, the PI3K pathway provides strong growth- and survival-

promoting signals. AKT has been shown to be a key driver of the

glycolytic phenotype through the upregulation of glucose trans-

porter expression [22,23], induction of glycolytic enzymatic activ-

ity (i.e. phosphorylation of hexokinase-2) [24,25] and the

activation of the mammalian target of rapamycin (mTOR) and

hypoxia inducible factor 1 (HIF1) pathways [26–28]. AKT also

stimulates de novo synthesis of fatty acids by activating the SREBP

transcription factor [29].

HIF1a is one of the major transcription factors responsible for

gene expression changes under low oxygen conditions [14,30].

HIF1a expression can also be enhanced by oncogenic signalling

pathways including Myc, Ras and PI3K/AKT [17,31,32]. Under

normoxia, HIF1a is downregulated by the von Hippel-Lindau

tumour suppressor, an E3 ubiquitin ligase that is absent in renal

cell carcinomas [33]. HIF1a has been shown to increase the expres-

sion of many metabolic enzymes including PFKFB3 (an isoform of

the glycolytic enzyme PFK2) [34,35], pyruvate dehydrogenase

kinase [16,36,37], LDHA [31,38], MCT4 (a lactate transporter)

[39] and GLUT1 [40].

Some of these links could still be controversial or currently only

seen in rare tumour types. However, germline mutations in rare
our’s sweet-spot, Drug Discov Today (2012), doi:10.1016/j.drudis.2011.12.017
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FIGURE 1

Schematic representation of the regulation of cancer metabolism pathways. Metabolic enzymes are regulated by signalling pathways involving oncogenes and

tumour suppressors. Complex regulatory mechanisms, key pathway interactions and enzymes are shown along with key metabolic endpoints (shown in purple)

necessary for proliferation and survival (biosynthetic intermediates and NADPH). Key oncogenic pathways are shown in green and key tumour suppressor

pathways are shown in red. Mutant IDH (mIDH) pathway is listed but is only functional in cancers containing mIDH.
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hereditary cancers are often indicative of a more common inactiva-

tion of a specific gene or pathway in sporadic cancers (e.g. retino-

blastoma protein). With the renewed interest in cancer metabolism

it is hoped this that ongoing research will further unravel the

complex interplay between cancer drivers and metabolism.

Some of the most striking advances in our understanding about

how cancer cells highjack metabolic pathways relate to how

tumour cells adapt their metabolism to shift the flux of metabo-

lites into pathways branching from glycolysis to yield key biosyn-

thetic intermediates, fuelling tumour progression. Several more-

recent studies have highlighted the importance of other metabolic

pathways, including the TCA cycle, pentose-phosphate pathway

and serine biosynthesis in certain cancer settings.

Glycolysis and cancer
Glycolysis is the process by which glucose enters the cells and is

processed, via a cascade of reactions, to pyruvate which can then

either enter the TCA cycle or be converted to lactate. Many

proteins within the glycolytic pathway have been implicated in
Please cite this article in press as: Jones, N.P., Targeting cancer metabolism – aiming at a tum
cancer based on overexpression, knockdown or inhibition studies.

As discussed above, glycolytic enzymes are also regulated by

oncogenic signalling pathways [2,28] (Fig. 1). Glycolytic targets

associated with cancer include the glucose transporter proteins

[41,42], hexokinase-2 [43], PFK2 isoforms [34,35] and the pyruvate

kinase isoform PKM2 [44]. PKM2 is proposed to be the major PK

isoform in tumours and to exist in two distinct states; a highly

active tetrameric form and a low activity dimeric form [45,46].

Phosphorylation by oncogenic upstream kinases (e.g. fibroblast

growth-factor receptor) promotes formation of the low activity

PKM2 form and acts to slow glycolytic flux [47–49]. This has been

proposed as one mechanism by which tumour cells can regulate

glycolysis enabling glycolytic intermediates to be processed via

alternative pathways.

TCA cycle and cancer
The TCA cycle is often seen as the link between glycolysis and

oxidative phosphorylation, and in normal differentiated cells the

majority of pyruvate is converted to acetyl-CoA which enters the
our’s sweet-spot, Drug Discov Today (2012), doi:10.1016/j.drudis.2011.12.017

www.drugdiscoverytoday.com 3

http://dx.doi.org/10.1016/j.drudis.2011.12.017


REVIEWS Drug Discovery Today � Volume 00, Number 00 � January 2012

DRUDIS-952; No of Pages 10

R
eview

s
�P

O
S
T
S
C
R
E
E
N

TCA cycle for processing to yield ATP (via the electron transport

chain). Processing via components of the TCA cycle can also

supply biosynthetic intermediates used in lipid synthesis and

redox equivalents that could help cancer survival and proliferation

[6,50] (Fig. 1). The first cancer-related mutations in metabolic

pathways have been identified with the discovery of mutated

versions of three TCA cycle proteins.

Two enzymes from the TCA cycle, succinate dehydrogenase and

fumarate hydratase (FH) have been discovered to have a loss of

function mutation linked to tumourigenesis and have therefore

been tentatively described as tumour suppressor genes [51,52].

Heterozygous germline mutations in succinate dehydrogenase

(SDH) subunits have been found in hereditary paragangliomas

and in phaeochromocytomas, a rare hereditary cancer predisposi-

tion syndrome [53,54]. Carriers of SDHB (succinate dehydrogenase

complex subunit B) mutations have also been reported to be more

susceptible to renal cell cancers [55,56]. SDH catalyses the oxida-

tion of succinate to fumarate. SDH mutant tumours have increased

levels of succinate, are more vascularised and are associated with a

hypoxic signature [51,57]. Germline mutations in FH predispose

to inherited leiomyomas (generally benign), the hereditary leio-

myomatosis and renal cell cancer (HLRCC) syndrome, and to

certain renal carcinomas [58,59]. There are some reports of linking

FH mutations to tumourigenesis in bladder, testicular and breast

cancers [52,54]. FH catalyses the conversion of fumarate to malate

and loss of function mutations of FH lead to increased levels of

fumarate and succinate. FH-mutant tumours are also associated

with a hypoxic signature and are often highly vascularised [51,52].

One mechanism by which FH and SDH mutations are believed

to promote tumourigenesis is via the upregulation of HIF1a
Please cite this article in press as: Jones, N.P., Targeting cancer metabolism – aiming at a tum
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signalling. HIF1a is usually targeted for degradation via hydro-

xylation by the HIF prolyl 4-hydroxylases (PHDs). Increased levels

of succinate or fumarate inhibit PHD activity and lead to HIF1a

stabilisation resulting in pseudohypoxia, a condition in which

tumour-promoting hypoxic signalling is maintained even in nor-

moxic conditions [37,57,60].

Another component of the TCA cycle, isocitrate dehydrogenase

(IDH), which catalyses the conversion of isocitrate to a-ketogluta-

rate (a-KG), has also recently been found to be mutated in certain

cancers [61–63]. Heterozygous mutations in IDH2 have been found

in �16% of glioma patients [64], whereas IDH1 or IDH2 mutations

are found in �20% of acute myeloid leukaemia (AML) patients

[61,65]. A striking discovery was the fact that the mutant IDH

enzyme acquires a neomorphic catalytic activity that enables the

NADPH-dependent reduction of a-KG to 2-hydroxyglutarate (2HG),

an as yet poorly characterised metabolite, which was found to be

significantly accumulated in the blood of AML patients and in

glioma cells [66,67]. The function of 2HG, which has been termed

an oncometabolite, is so far unclear although it could act by

inhibiting an a-KG-dependent protein. It has also been suggested

that it could have effects on the tumour microenvironment because

it is excreted by malignant cells [63].

Pentose phosphate pathway and cancer
One glucose-dependent pathway that provides key biosynthetic

intermediates is the pentose phosphate pathway (PPP), which con-

sists of a non-reversible oxidative branch and reversible non-oxida-

tive branch [25] (Fig. 2). The oxidative branch of the PPP yields

ribose-5-phosphate, which is used in nucleotide synthesis, and

NADPH, which is used in lipid synthesis and in combating oxidative
our’s sweet-spot, Drug Discov Today (2012), doi:10.1016/j.drudis.2011.12.017
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stress. The PPP is initiated by the conversion of the glycolytic

intermediate glucose-6-phosphate to 6-phosphogluconolactone

through the action of the enzyme glucose 6-phosphate dehydro-

genase (G6PDH). The reversible non-oxidative branch of this path-

way can either convert the glycolytic intermediates fructose-6-

phosphosphate and glyceraldehyde-3-phosphate to ribose-5-phos-

phate without NADPH generation or can convert ribose-5-phos-

phate to the glycolytic intermediate glyceraldhyde-3-phosphate

which can be converted back to glucose-6-phosphate and re-enter

the oxidative branch. By coupling the two branches of the PPP one

molecule of glucose can be used to generate six molecules of the

essential reducing agent NAPDH in a highly efficient process [5,25].

Given the importance of ribose-5-phospate for nucleotide synth-

esis and NAPDH for biosynthetic reactions and redox balance,

inhibiting components of the PPP could be an attractive way to

target rapidly growing tumour cells. It has been shown that some

cancer cell lines exhibit increased flux through the pentose phos-

phate pathway and that G6PDH is overexpressed in certain tumour

types including gastric, colorectal [68] and kidney [69]. Recently,

G6PDH has also been shown to be negatively regulated by wild-type,

but not mutant, p53. Cancer cell lines expressing mutant p53

showed increased PPP flux, enhanced G6PDH activity and increased

sensitivity to depletion of G6PDH expression by RNA interference

(RNAi) or inhibition of this enzyme with the specific inhibitor DHEA

[70]. Possible links between G6PDH and DNA repair have also been

reported with the DNA-damage-sensing kinase ATM, shown to

activate G6PDH via HSP70 [71]. Given that many chemotherapies

act to induceDNAdamage and also generate reactive oxygenspecies,

inhibition of G6PDH would reduce the ability of cancer cells to

counteract this damage and could represent an interesting strategy

to enhance the effectiveness of these agents. A deficiency in G6PDH

is found in �400 million people worldwide, with patients suffering

mild anaemia but no other serious health issues. Studies on cancer

prevalence amongst this group have been inconclusive to date,

although studies in the 1990s suggest no change in cancer occur-

rence or mortality rates associated with G6PDH deficiency [72].

Within the non-oxidative branch of the PPP, substantial interest

has focused on the role of transketolase proteins. It has been
Please cite this article in press as: Jones, N.P., Targeting cancer metabolism – aiming at a tum
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reported the transketolase-like protein 1 (TKTL1) is the predomi-

nant transketolase in certain tumour types and inhibition of

TKTL1 by RNAi impairs cancer cell growth [73–75]. Recently,

the existence of a cancer-specific transketolase has been ques-

tioned in studies investigating TKTL1 mRNA levels that also

tested several antibodies previously used for disease linkage

studies [76–78]. However, the general transketolase inhibitor

oxythiamine has also been reported to inhibit cancer cell growth

with these effects being magnified if the G6PDH inhibitor DHEA is

added [69]. Although the data support the role of the PPP at least in

some types of cancer, the results also underline the importance of

robust validation of potential cancer metabolism targets.

Another interesting link between the PPP and cancer is the

discovery of the p53-regulated protein TIGAR [79,80]. TIGAR

possesses a fructose 2,6-bisphosphatase domain that is also found

in the glycolytic regulator PFK2. TIGAR negatively regulates PFK1

activity thereby slowing the glycolytic rate and promoting entry of

glucose-6-phosphate into the PPP [79,81]. Although the positive

regulation of TIGAR by p53 suggests that this could be an anti-

tumourigenic function, TIGAR is also reported to be expressed in a

p53-independent manner and is overexpressed in some tumours.

It is therefore conceivable that TIGAR could have pro-tumouri-

genic roles at least under conditions where flux through the PPP is

beneficial for tumour growth [81,82]. It is clear that understanding

the balance between glycolytic flux and metabolite entry into the

PPP in different tumour settings will be crucial in developing

targeted strategies against this pathway.

Serine biosynthesis and cancer
Another branch diverting from glycolysis recently implicated in

cancer is the serine biosynthesis pathway which converts the

glycolytic intermediate 3-phosphoglycerate into serine (Fig. 3).

Serine is an amino acid and an important neurotransmitter but can

also provide fuel for the synthesis of other amino acids and

nucleotides. The serine biosynthesis pathway also provides

another key metabolic intermediate, a-KG, from glutamate break-

down via the action of phosphoserine aminotransferase (PSAT1).

This pathway couples glycolysis (via 3-phosphoglycerate) with
our’s sweet-spot, Drug Discov Today (2012), doi:10.1016/j.drudis.2011.12.017
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glutaminolysis (via glutamate), thereby linking two metabolic

pathways known to be activated in many cancers.

All three components of the serine biosynthesis pathway have

been found to be overexpressed in cancer. However, recent atten-

tion has focused mainly on the initiating enzyme 3-phosphogly-

cerate dehydrogenase (PHGDH) [83–86]. The PHGDH gene lies

within chromosome region 1p12, a region showing copy number

gain in �16% of cancers [84,85]. Further analysis revealed that the

PHGDH gene is amplified in 16% of melanomas and 6% of primary

breast tumours [84]. PHGDH expression is elevated in �70% of

estrogen receptor-negative breast tumours and is associated with

poor levels of five-year survival [85]. Studies showed that depletion

of PHGDH expression using short-hairpin RNA (shRNA) reduces

cell growth in ER-negative breast cancer or melanoma cells

with amplified PHGDH [84,85]. Overexpression of PHGDH in

MCF10a human breast epithelial cells is sufficient to cause mor-

phological changes reminiscent of oncogenic transformation [84].

In vivo studies suggest that PHGDH knockdown in sensitive cell

lines reduces cell growth by up to 60% [85]. Flux analysis showed

that �9% of glucose is shuttled into the PHGDH pathway in

PHGDH-dependent cell lines compared with only 1% of glucose

in non-sensitive cell lines. Furthermore, in cell lines with high

PHGDH expression, the serine synthesis pathway is responsible for

up to 50% of the net conversion of glutamate to a-KG. These

studies elegantly show the importance of the serine biosynthesis

pathway in regulating glycolysis and glutaminolysis in cancer

[84,85].

Interestingly, clinical manifestations of deficiencies in PHGDH,

PSAT1 and PSPH are known in patients presenting with neurolo-

gical disorders linked to serine neuromodulator roles [87–89].

These disorders can be alleviated to some extent by treatment

with exogenous serine [90]. Because these mutations are rare, no

data on cancer prevalence have been available. The possibility of

efficient patient stratification suggests that targeting the serine

biosynthesis pathway could be of significant therapeutic value in

melanoma and breast cancers with PHGDH amplifications.

Current molecular targets
The renewed interest in the potential anticancer benefit of target-

ing metabolism has led to numerous inhibitors being developed

against key molecular targets within metabolic pathways. How-

ever, none of these potential agents has so far advanced beyond

clinical trials and most are still in preclinical development or

proof-of-concept stages [91–93]. A list of some of these potential

agents, their targets and some of the biological data supporting

them is summarised in Table 1. This illustrates the wide spectrum

of metabolic pathways currently under investigation as potential

anticancer intervention points including glycolysis [91] (HK-2

[39], PKM2 [13,30,44,94–97], PFKFB3 [98], LDHA [93,99], MCT

[100]), TCA cycle and associated pathways {PDK1 [101], mIDH,

aspartate aminotransferase (AAT) [102]}, glutaminolysis (GLS

[99]), PPP (G6PDH [39], TKT/TKTL1 [73,103]), lipid synthesis

(FASN [104,105], ACLY [106], MAGL [107,108]) and co-factor

synthesis [17,91,93,97,111] (i.e. NAMPT [109,110]).

One of the most advanced clinical agents is 2-deoxyglucose

(2DG), an analogue of glucose, which is taken up by cells using the

same transporters as glucose and is phosphorylated by hexokinase

to non-hydrolysable 2-deoxyglucose-phosphate [39,92]. 2DG is
Please cite this article in press as: Jones, N.P., Targeting cancer metabolism – aiming at a tum
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believed to block hexokinase-induced phosphorylation of glucose

as well as the association of hexokinase with mitochondria. 2DG

has been shown to inhibit glycolysis, N-glycosylation and to

induce endoplasmic reticulum stress via accumulation of mis-

folded proteins. However, because the inhibition of hexokinase

by 2DG is reversible, its effectiveness is reduced by high cellular

glucose levels [92]. It is also interesting to note that fluorescently

labelled 2DG is used in medical imaging for the visualisation of

glucose uptake in tumours to aid tumour identification. In glio-

blastoma multiforme patients, Phase I/II trials of 2DG in combina-

tion with radiation suggested oral dosing of 2DG was tolerated

without any acute toxicity. Patients showed modest survival ben-

efits and improved quality of life [112,113]. However, progress

beyond this has yet to be reported and although other trials are

planned or underway results from these have not yet been forth-

coming [114].

Many cancers exhibit a shift towards increased glycolysis and

the processing of pyruvate to lactate suggesting that the flux

through the TCA cycle is reduced. One therapeutic strategy is to

try to reactivate the TCA cycle in cancer cells by inhibiting

negative regulators of oxidative phosphorylation (i.e. inhibition

of PDK1). Dichloroacetate (DCA) has been reported to restore

pyruvate entry into the mitochondrial TCA cycle in cancer cells

in vivo, thereby causing apoptosis and tumour shrinkage

[115,116]. Initial small-scale clinical trials suggest that DCA is well

tolerated, causes some of the expected metabolic changes and

induces tumour shrinkage in three out of five tested glioblastoma

patients [116]. However, more work is needed to ensure full

understanding of the exact mechanism of action of this com-

pound. Larger clinical trials will be required to investigate if this

agent really has promise in targeting cancer metabolism and

delivers genuine benefit to patients. Other agents that target

PDK have been previously developed as possible treatments for

metabolic disorders; therefore, it will be interesting to see if these

also have any anticancer roles [101,117,118].

Another possible therapeutic strategy is to try to inhibit the

removal of lactate from cancer cells and thereby acidify the

intracellular environment killing the tumour cell [119,120]. There

is also evidence for metabolic heterogeneity within a single

tumour. It has been shown that cells within oxygenated regions

of a tumour rely on lactate that is secreted by hypoxic tumour cells

as metabolic fuel. Disrupting lactate transport could starve these

cells and enhance tumour killing [121]. Lactate is usually actively

removed from the cell by members of the monocarboxylate trans-

porter (MCT) family and MCT proteins, notably MCT1 and MCT4,

have been found to be overexpressed in several cancer types

[100,122–126]. MCT1 inhibitors have been shown to affect cancer

cell growth and invasion [100,121,127,128] and in vivo tumour

growth [121]. An MCT1 inhibitor developed by AstraZeneca is

about to enter Phase I clinical trials.

Metabolic disorders and cancer
Links between cancer and metabolic disorders such as diabetes have

long been suspected. Metabolic disorders such as diabetes cause

alterations in glucose metabolism and could be associated with

increased cancer risk. This has led to much focus on studying the

regulation of signalling and metabolic pathways under these disease

conditions and offers the potential to use existing knowledge about
our’s sweet-spot, Drug Discov Today (2012), doi:10.1016/j.drudis.2011.12.017
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TABLE 1

Summary table of potential drugs/compounds targeting cancer metabolism. Examples listed are of published compounds or pipeline candidates that are designed to target
cancer metabolism pathways and, where possible, details of molecular target, biological rationale/validation and status are given

Drug/compound (Source/reference) Molecular or pathway target Biological validation Current status (if known)

Phloretin GLUT1/4 Blocks glucose uptake Early development

2-Deoxyglucose Hexokinase

(glycolysis)

Blocks glycolytic flux Reported in clinical trials

3-Bromopyruvate Hexokinase

(+ other glycolytic targets?)

Blocks glycolytic flux Preclinical development

Lonidamine Hexokinase Blocks glycolytic flux Clinical trials ongoing

3PO [+ derivatives]
(Advanced Cancer Therapeutics)

Phosphofructose kinase 2 [PFKFB3] Blocks positive regulation of PFK1 and glycolysis Preclinical development

Cap-232/TLN-232
(Thallion Pharmaceuticals)

Pyruvate kinase-M2 Blocks pyruvate formation via PK route Trial suspended owing to

licensing dispute

(Agios Pharmaceuticals) Pyruvate kinase-M2 Blocks pyruvate formation via PK route Preclinical

(Agios Pharmaceuticals) Pyruvate kinase-M2 activators Promotes glycolytic flux reducing synthesis of
biosynthetic intermediates

Preclinical

Dichloroacetate Pyruvate dehydrogenase kinase (+ metabolic targets?) Activates PDH and promotes oxidative phosphorylation Basic Phase I trial completed,

Phase II studies proposed

FX11 (University of New Mexico/
The John Hopkins University)

Lactate dehydrogenase Blocks metabolic flux pathways Early development

Oxamate Lactate dehydrogenase and aspartate aminotransferase Blocks metabolic flux pathways Early development

Amino oxyacetate Aspartate aminotransferase Blocks metabolic flux pathways Early development

AZD-3965 (AstraZeneca) MCT1 Blocks lactate secretion Phase I/II trials planned with CR:UK

5-Dehydroepiandrosterone [DHEA] Glucose-6-phosphate dehydrogenase

+ multiple non-metabolism targets

Blocks oxidative pentose phosphate pathway (PPP) Early development

Oxythiamine Transketolase Blocks non-oxidative PPP Early development

(Tarvagenix) Transketolase-like 1 (TKTL1) Could block non-oxidative PPP in cancer Early development (no published data)

6-Diazo-5-oxo-L-norleucine Glutaminase

(glutaminolysis)

Blocks glutamine conversion to glutamate Toxicity issue

Early development

968 (Cornell University) Glutaminase Blocks glutamine conversion to glutamate Early development

BPTES Glutaminase Blocks glutamine conversion to glutamate Early development

GSK837149A (GSK) Fatty acid synthase Blocks fatty acid synthesis Preclinical

Orlistat (Roche) Fatty acid synthase Blocks fatty acid synthesis Preclinical

C75 Fatty acid synthase Blocks fatty acid synthesis Early development

SB-204990 (GSK) ATP citrate ligase Blocks fatty acid synthesis Preclinical

(Agios Pharmaceuticals) Mutant IDH1/2 Blocks alternative catalytic function of mIDH Preclinical

CPI-163 (Cornerstone
Pharmaceutical)

Glycolytic target Blocks glycolytic flux Phase I/II trials ongoing

Metformin Energy sensing pathways (AMPK) and other targets Blocks lipid and protein synthesis and glycolytic regulation Used in diabetes, clinical
trials in cancer ongoing

MPC-9528 (Myrexis) Nicotinamide phosphoribosyltransferase Blocks NAD production and reduces glycolysis Preclinical
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treatment strategies or agents used to treat metabolic disorders as

potential anticancer therapies [129,130].

One striking example is the antidiabetic drug metformin, which

is used in the treatment of diabetes and currently taken by 100

million people worldwide. Analysis of cancer rates amongst dia-

betic patients showed those prescribed metformin had a reduced

risk of developing cancer compared with patients not taking this

drug [131–133]. The data suggest that metformin could inhibit the

tumour-initiating process. The exact molecular target of metfor-

min is yet unknown and it is probable that it affects multiple

metabolic and non-metabolic processes. One target that is modu-

lated by metformin is the energy-sensing kinase AMPK [130]. This

kinase is found to be activated by metformin resulting in inhibi-

tion of lipid and protein synthesis, rapid glycolysis and potentially

increased oxidative phosphorylation. These events could serve to

reduce the availability of biosynthetic intermediates and cofactors

required for the growth and survival of cancer cells [129,130].

Intriguingly, one of the cellular activators of AMPK is LKB1, which

is itself a tumour suppressor gene absent in some cancers. Studies

are underway to understand the roles of the LKB1/AMPK pathway

in tumour initiation and progression [134,135]. Given that met-

formin is an FDA-approved drug, clinical trials are also ongoing to

investigate the effects of metformin on established tumours.

Future perspectives
The key challenge in targeting cancer metabolism will be under-

standing the complex nature of metabolic networks and how

different cancers adapt these processes to fulfil their metabolic

requirements. Only a detailed understanding will enable the

identification of the targets that can be of therapeutic benefit.

Understanding how oncogenes control metabolism will be essen-

tial in the development of stratified treatments against cancer

metabolism targets. It will also be important to understand poten-

tial redundancies or by-pass mechanisms within complex meta-

bolic processes to predict whether it might be necessary to block

multiple points within the network. The potential of using novel

agents targeting metabolic enzymes in combination with conven-

tional or existing therapies could offer increased therapeutic ben-

efits and reduced risks of developing resistance. Many current

chemotherapies increase cellular ROS levels, damage DNA or

impact other metabolic processes. It is probable that blocking

the biosynthetic supply routes used by cancer cells could act

synergistically to enhance the therapeutic effect of these drugs.

However, targeting metabolic enzymes also offers novel challenges

within the drug discovery process because metabolic targets can

be structurally more complex than protein kinases, which are the
Please cite this article in press as: Jones, N.P., Targeting cancer metabolism – aiming at a tum
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main target class for conventional targeted therapies. Alternative

assay formats and novel screening and chemical strategies will

need to be considered.

Many of these tools are already in place in industry from either

established oncology work or from drug discovery efforts in meta-

bolic disorders. Transfer of this expertise to the cancer metabolism

area will assist in drug development of anticancer metabolism

agents. Many pharmaceutical companies are also looking to acade-

mia to assist with this process. Academic laboratories have been the

driving force behind many of the recent developments. Academic

groups are also crucial for the ongoing cancer metabolism work

within the industry. For example, Agios Pharmaceuticals and Cor-

nerstone Pharmaceuticals were both founded on the basis of the

work of academic experts in cancer metabolism and both companies

still actively collaborate with academic groups to progress targets of

interest. Advanced Cancer Therapeutics also works closely with

academic groups to pursue their cancer metabolism interest. Astra-

Zeneca and Cancer Research Technology (CRT) have entered into a

three-year alliance to explore metabolism targets in cancer linked to

CRUK-funded academic research. CRUK, CRT and AstraZeneca are

also in partnership to progress a clinical trial using AstraZeneca’s

inhibitor of the lactate transporter MCT1. It is through these aca-

demic and commercial partnerships that biological knowledge and

drug discovery expertise can be brought together to tackle the

complex field of cancer metabolism. It will be interesting to follow

how the revived research and drug discovery efforts in cancer

metabolism will progress over the next few years to lead to

new therapeutic strategies and patient benefit in the fight against

cancer.
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