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In silico toxicology prediction is an extremely challenging area because many toxicological effects are a

result of changes in multiple physiological processes. In this article we discuss limitations and strengths

of these in silico tools. Additionally, we look at different parameters that are necessary to make the best

use of these tools, and also how to gain acceptance outside the modelling community and into the

regulatory arena. As a solution, we propose an integrated workflow for combined use of data extraction,

quantitative structure activity relationships and read-across methods. We also discuss how the recent

advances in this field can enable transition to a new paradigm of the discovery process, as exemplified by

the Toxicity Testing in the 21st Century initiative.
Introduction
Chemicals in drugs, food and consumer goods are an integral part

of our everyday life whether they be ‘naturals’ or manmade.

Although the regulatory needs and requirements for risk assess-

ments differ between consumer goods and pharmaceutical indus-

tries, it is evident that the in silico approaches currently available

can offer significant benefit to both of these sectors.

The well recognised definition of a good and successful drug is

an appropriate balance of potency, efficacy, safety and favourable

pharmacokinetics. For the drug industry, it is imperative that a

chemical can reach its target with a concentration at the target site

suitable for the desired efficacy and also below toxicity thresholds.

To avoid late-stage failures in the discovery of new chemicals to be

used as drugs, absorption, distribution, metabolism, elimination

and toxicity (ADMET) studies are now mostly carried out at a much

earlier stage of the discovery process [1–3]. However, owing to the

use of combinatorial chemistry libraries and high-throughput

screening (HTS), there has been a dramatic increase in the number

of active chemicals. Consequently, the discovery process has

struggled to keep up with this increase in influx of chemicals.

Similarly within the consumer goods industry, late-stage failures

are costly in terms of resource and time due to safety concerns and

as such there is a strong rationale to bring safety assessments closer

to the initial stages of the innovation pipeline where a larger pool
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of candidate compounds is available. Usually, the traditional

safety methods centred around toxicological assessment and test-

ing are unable to cope with the influx of new chemicals to be tested

in a timely way. There is also growing interest in the development

of alternative approaches to toxicity testing [4] that reduce, refine

or replace the use of animals in safety assessment and also enable

faster high throughput assessment of hazard and risk that is

relevant to human safety assessment. To address this, there is a

need for development of both in silico virtual models and also a

better understanding of the effects of different chemicals on

physiological processes. This could then be deployed for toxico-

logical assessments at an earlier stage of the discovery process and

for assessment of larger numbers of chemicals [5–9].

Why in silico?
In silico screening is typically a low cost high-throughput process,

which can provide a fast indication of potential hazards for use in

lead prioritisation [6–9]. As no physical compounds are required,

these screens can be run on virtual compounds at early stages of

discovery to prioritise chemicals for ADMET testing. Additionally,

in silico tools can help provide a mechanistic understanding of

these predictions, for example, to explain why a compound is

predicted to be active or inactive. This information can then be

used to re-engineer a chemical, alter its ADMET profile or design

out the toxicity of new chemicals. These predictive models can be

built either directly on data from in vitro assays (e.g. Ames bacterial
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mutation assays) or directly on in vivo data (e.g. carcinogenicity,

TD50s), and can also be used for understanding of in vitro to in vivo

extrapolation. Following successful validation of a predictive

model, it might be possible to have faster cycle times, lower costs,

and early indication of drug failure, with a much reduced need for

in vitro or animal testing. Depending upon the toxicology end-

point, some of these in silico tools and technologies are considered

to be valid and are recognised by some regulatory agencies (e.g. for

use in the European REACH initiative) [10]. A set of principles

from the Organisation for Economic Co-operation and Develop-

ment (OECD) must be followed to achieve regulatory acceptance

of the predictive chemistry tools. These include questions around

the defined endpoint (i.e. data used for modelling, applicability

domain, methods, their mechanistic interpretation and appro-

priate measures of predictivity [11]). In the remainder of this

article, we discuss the importance of these points, and why it is

crucial to get them right to gain the full benefits of in silico

chemistry.

Choosing the right data
Because toxic effects are still responsible for some 20% of the late-

stage failures in drug development, there is an urgent need for in

silico tools that can be used to estimate the toxicology profile of a

chemical [6]. Typically, adverse reactions are not discovered until

after market release. This is an expensive scenario that is all too

common in the discovery of new drugs and chemicals. The most

relevant data usually comes from human clinical trials, which can

be very expensive to generate and also limited in number of data
Please cite this article in press as: S.. Modi, et al., The value of in silico chemistry in the safety a
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TABLE 1

List of public data sources as useful training sets for predictive che

Database Brief description 

ACToR – Aggregated
Computational
Toxicology Resource

ACToR (Aggregated Computational Toxicology R

collection of databases collated or developed b
Center for Computational Toxicology (NCCT). D

structure, physico-chemical values, in vitro assay

CCRIS Chemical Carcinogenesis Research Informatio

carcinogenicity, mutagenicity, tumor promotio
inhibition data provided by the National Can

ChEMBL Contains calculated properties (e.g. log P, mo

Lipinski parameters, among others) and abstr

(e.g. binding constants, pharmacology and AD

Comparative Toxicogenomics
Database (CTD)

Find associations between gene/proteins, env
chemicals and toxicology

CPDB (The Carcinogenic
Potency Database)

Provides a broad perspective on possible can

human exposures to chemicals that cause ca

rodent cancer tests

DART Developmental and Reproductive Toxicology 

Teratology Information Center – current and 

developmental and reproductive toxicology

NTP (National
Toxicology Program)

It contains toxicity studies from shorter durat

genetic toxicity studies, which includes both 

in vivo tests. It also contains the immunotoxic

toxicity and reproductive toxicity studies

RepDOSE Repeat dose study data for dog, mouse and 

chemicals on target organs. Studies are rated

ToxRefDB ToxRefDB (Toxicity Reference Database) captu
in vivo animal toxicity studies on hundreds o
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points. The data chosen for modelling toxicity has to be chosen

wisely for any given toxicology endpoint. For example, in the case

of genetic toxicity, there is a large body of in vitro data available

from Ames testing compared with limited in vivo data (e.g. carci-

nogenicity in different species). While the in vitro data provides a

comprehensive model training set, it must be noted that the final

goal of in silico models is to predict the in vivo effects in humans for

a given chemical. One must therefore choose in vitro toxicology

endpoints carefully keeping its relationship and relevance to the in

vivo data in mind. It is clear that the use of animals has limitations,

for example, humans are not 70 kg rats, we absorb/metabolise

chemicals differently; we live longer (enabling certain diseases to

develop, prompting evolutionary adaptations to protect against

them); and we are exposed to a multitude of environmental factors

[12,13]. The models are clearly only as good as the data they are

based on, there is still no replacement for the expression ‘garbage

in, garbage out’ [14]. Before modelling any data, the modeller

needs to ensure the quality of the datasets from different sources

and standardisation procedures must be in place to cope with data

in different formats. With the recent advances in HTS, chemical

synthesis and biological screening, there is no shortage of publicly

or commercially available databases that can be used as data

sources for these models [15]. A recent article discusses some of

these issues and has also evaluated the consequences of both

random and systematic errors with chemical structure curations

in well-known datasets [16]. Some useful electronic resources that

contain data suitable for toxicology model building are listed in

Table 1.
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y the US EPA National
ata includes chemical

 data, expo

ACToR: http://actor.epa.gov/actor/actor_help_

20080903.htm

n System –

n, and tumor
cer Institute (NCI)

U.S. National Library of Medicine:

http://www.nlm.nih.gov/pubs/factsheets/ccrisfs.html

lecular weight,

acted bioactivities

MET data)

ChEMBL: https://www.ebi.ac.uk/chembldb/

ironmental Comparative Toxicogenomics Database:
http://ctd.mdibl.org/

cer hazards from

ncer in high dose

The Carcinogenic Potency Project:

http://potency.berkeley.edu/

and Environmental
older literature on

U.S. National Library of Medicine:
http://www.nlm.nih.gov/pubs/factsheets/dartfs.html

ion tests and from

in vitro and
ity, developmental

National Toxicology Program:

http://ntp-apps.niehs.nih.gov/ntp_tox/

rat. Shows effects of

 by reliability

RepDOSE: http://www.fraunhofer-repdose.de/
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Choice of methods
The three main predictive chemistry approaches, such as structure

activity relationships (SAR), quantitative structure activity rela-

tionships (QSAR) and read-across, have been used in the past for

the prediction of several toxicology endpoints.

SAR
This approach is associated with the local reactivity of chemicals

and includes reactivity of functional groups also called structural

alerts, pharmacophores or toxicophores [17–20]. This technique

can be an invaluable tool in the in silico prediction of toxicity

because it is simple and easy to understand, and highlights the

presence of certain substructures within the molecule that can be

related to an adverse reaction. Also, this alert approach can help

provide mechanistic understanding of an observed adverse out-

come. SAR usually works well with binary classifications and has

been used for highlighting fragments of several toxicology end-

points, including Ames, carcinogenicity, hepatotoxicity and skin

sensitisation [20].

QSAR
This approach provides the statistical relationship between the

toxicity of a chemical and its physicochemical properties and

structural characteristics. Different QSAR and machine learning

methods have different ways of deriving these approximations to

provide information about the toxic effect of chemicals [21]. Like

SAR, this approach can work with binary classification [22–24] but

also works with continuous data, such as rodent carcinogenicity

and chronic toxicity data [25,26].

Read-across
Read-across of hazard data is a well recognised method for pre-

dicting the hazard profile of a substance where endpoint data are

lacking by linking it to structurally similar compounds for which

experimental data are available for a given endpoint [27,28]. This

enables for a read-across approach to be used to predict the toxicity

of those members of a chemical family for which no direct tox-

icology data are available.

To fully capitalise on the opportunities presented by these in

silico tools, they need to be transparent and provide as much

support and confidence behind each prediction as possible. As

all biological endpoints (especially toxicity) are often the combi-

nation of multiple phenomena, most in silico models end up being

complex [21,25,26]. There has to be balance between model

interpretation, complexity and its predictive power. Depending

on the endpoint, probabilistic and statistical QSAR methods

(involving complex algorithms) might provide superior results

as compared with simple SAR methods as it has been shown in

the case of genotoxicity modelling [22–24]. The modelling algo-

rithm linking molecular descriptors to the output variable needs to

be chosen so that it takes the complexity of the particular relation-

ship into account, otherwise overfitting (in case a complex mod-

elling procedure is used) or insufficient predictivity of a model (in

case a simple modelling procedure is used) might result. In case a

complex algorithm is used in building the models, users might

think that the models are an ‘algorithmic jungle’ and conse-

quently, the benefits of the models could be easily misunderstood
Please cite this article in press as: S.. Modi, et al., The value of in silico chemistry in the safety a
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[29]. The precise choice of descriptors and modelling methods for a

given model is generally dictated by the complexity of the process

that underlies the given toxicity event, regulatory considerations,

such as the OECD QSAR guidelines and the personal preference of

the model developer. For example, for the drug-induced phospho-

lipidosis, the potentially toxic excessive accumulation of phos-

pholipids in cells/tissues might be described with simple

descriptors, such as the presence of a positive charge/basic sub-

stituent and high lipophilicity [30]. By contrast, for example P450

inhibition or hERG binding are complex receptor-mediated pro-

cesses, which arguably require complex non-linear modelling

methods [31–33]. However, like with any complex problem, the

task of building an understanding is much easier if this can be

broken into different simple processes. A study [34] shows and

suggests how in silico models for hERG inhibition can be used as

early screening tools for eliminating potent hERG inhibitors from

chemical libraries in early drug discovery. This could serve as an

alternative to the more expensive and time consuming experi-

mental assessments, or the model could be used to prioritise

sending predicted inhibitors for experimental assay [34,35]. The

choice of method, its transparency and its mechanistic interpreta-

tion might have an important role in getting the full benefits of

these approaches, and also the acceptance of these tools outside

the modelling community and into the regulatory arena. Table 2

lists some of the popular free open source software for prediction of

various toxicity endpoints. The methods used in this table varies

from simple SAR methods to complex QSAR methods.

Importance of applicability domain
In silico models might not perform well if a predicted chemical is

beyond the chemical space where the models were developed [36–

38]. Therefore, applicability domain is one of the main reasons for

the QSAR/SAR model failure owing to the difference in chemical

space of compounds that were used to develop and apply the

models. This leads to the issue of whether global or local models

should be used. Global models usually contain a large and diverse

set of chemicals. These are generally suited to dealing with non-

congeneric structural data and also when semi-quantitative pre-

dictions are needed. An example is discussed in a recent study for

Ames test predictions [24]. By contrast, local models are built on a

particular chemical series containing a small set of closely related

chemicals and hence these local models might have a small

applicability domain. An example of this has been shown for

the Ames predictions for the aromatic amines [39]. In silico mod-

ellers should therefore highlight the validity of these in silico

models by selecting and obtaining experimental data from new

compound sets with structures different from those in the original

model training sets [40]. For a bad model, accuracy measures tend

to be biased towards the training set, but its performance then

decreases when tested with a new set of chemicals [19].

How to make best use of (Q)SAR methods
It is important that the models built are continuously validated

and refined based on new data and understanding the cause of the

apparent ‘failure’ cases. It is well known that each individual

model has its own problems and pitfalls [41–43]. For example,

in the case of the expert derived structural alert approach [17–20],

where the presence of a small fragment can be correlated with a
ssessment of chemicals in the consumer goods and pharmaceutical industries, Drug Discov
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TABLE 2

List of free open source tools/softwares for predictive toxicity models

Name of software Brief description Refs

CAESAR Models for mutagenicity/carcinogenicity were developed and

released as an open source software tool in the frame of the

EU CAESAR project. In this two complementary approaches

(regression and classification) were applied to develop models
for carcinogenic

Computer Assisted Evaluation of industrial chemical

Substances According to Regulations:

http://www.caesar-project.eu/

Lazar For predictions of Ames mutagenicity, carcinogenicity Lazar Toxicity Predictions: http://lazar.in-silico.de

OECD Toolbox For prediction of several end points as well as experimental

data that can be used to support grouping and read-across

Oasis: http://toolbox.oasis-lmc.org

OncoLogicTM For predictions of carcinogenicity http://www.epa.gov/oppt/sf/pubs/oncologic.htm

Tox-Comp Flexible, modular system for the early assessment of the
cardiotoxic potency

Tox-Comp.net: http://tox-comp.net/

ToxTree This was developed by Ideaconsult Ltd. (Sofia, Bulgaria) under the

terms of a contract with the European Commission Joint Research

Center. This is capable of making structure-based predictions for
several toxicological endpoints including skin sensiti

Toxic Hazard Estimation by decision tree approach:

http://toxtree.sourceforge.net/

VirtualToxLabTM The VirtualToxLabTM is an in silico tool for predicting the toxic

potential (endocrine and metabolic disruption, interference with

the hERG ion channel) binding affinity towards (currently)
16 target proteins: AhR, AR, ER, hERG, GR, LXR, MR, PPAR, TR, CYP

VTV Molecular Modelling:

http://www.chemie.unibas.ch/�vbc/molmod/virtualtox/index.html
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particular toxicity endpoint. In this approach, the steric and

electronic environment surrounding a given structural alert frag-

ment are easily ignored but these factors can either diminish or

enhance its toxicity. Moreover, this method is only designed for

highlighting positives (i.e. if no alerts are present, it does not mean

the chemical will not have any toxic effects), and also the role of

these small fragments towards many tox endpoints is not well

understood [44]. Where possible, modellers should employ several

predictive models for a single endpoint to produce better con-

sensus predictions [43]. For example in the case of predicting an

Ames test outcome, integration of human derived structural alerts

with artificial intelligence systems for Ames in a consensus mod-

elling manner has been shown to provide advantages over that of a

single model (User’s Guide for T.E.S.T: http://www.epa.gov/nrmrl/

std/cppb/qsar/testuserguide.pdf).

It is also possible that some models might be better at predicting

some subclasses of chemicals; it is therefore also possible to create

substructure-localised consensus models by taking into account

the strengths of each model for a particular substructural class

(User’s Guide for T.E.S.T: http://www.epa.gov/nrmrl/std/cppb/

qsar/testuserguide.pdf) [45,46]. It should be noted that consensus

modelling might not offer any advantages in cases where a strong

model is integrated with many weaker models, in cases like these

consensus prediction might even offer low predictivity over single

model due to noise addition from the weaker models.

Before model building, modellers need to have a clear picture

about where and how models will be used. It is important to

highlight the benefits and limitations of each model so that users

are able to understand when and why models might fail. Users of

the models also need to be aware of each step in the model

building workflow, including which data was used in the model

building exercise, which descriptors were used and what is the role

of each descriptor. For example, if a model is built on simple 2D

descriptors or fragments then it might not be able to highlight

differences in toxicity of stereo-isomers or even similar chemicals
Please cite this article in press as: S.. Modi, et al., The value of in silico chemistry in the safety a
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in 2D representations. It is often seen that the interpretation of the

success of models depends on their use and the expectations of the

user [47]. Therefore it is not surprising that for the same data and

same model, one user might find value in the model, whereas for

another user the same model might be of little value. For users it is

therefore important to know the building process of models and

expectations from it especially when these might be promoted for

use in a regulatory setting.

SAR, QSAR and read-across are data mining approaches, which

involve analysis of the structural features of sets of chemicals to

generate rules that enable users to predict outcomes for new

chemicals. The use of these approaches in a more systematic

and integrated workflow is suggested in Fig. 1. For any given target

chemical, one of the first steps should be to look for what is known

already for that chemical by use of text and data extraction

techniques. If there are gaps in the data, the next step should

be to fill these gaps using close analogues. Here, the strength of

available evidence should be judged on a case-by-case basis. For

example, in a case where there are many close analogues with

similar toxicology profiles, confidence will be much higher as

compared with a case where there are few close analogues with

a mixed toxicology profile. QSAR might be used as the final step if

there is no toxicology data available either on exact or close

analogues, but all the points about applicability domain and

confidence in predictions discussed above should be taken into

account.

Limitations of (Q)SAR approaches
Overall it also needs to be noted that these individual (Q)SAR in

silico toxicological methods are hazard identification methods and

in most of cases they do not take dose and exposure into account

unless a exposure–response relationship has been studied. There-

fore, in general, these will not predict toxicity in isolation, but

provide useful supplementary information for the overall risk

assessment process. For example, the aromatic nitro group is a
ssessment of chemicals in the consumer goods and pharmaceutical industries, Drug Discov
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• Gather all relevant genetic tox safety
  information)
• Fill gaps with experimental data on
  close analogues
• QSAR (for gap filling / validation /
  comparison purpose)   

Look for exact match

Can we do
read across ?

Can we do QSAR ?

• Gather all relevant genetic tox safety
  information on close analogues
• QSAR (for gap filling) 

• Follow individual model guidelines
  (applicability domain, confidence in
  predictions) 

Take expert opinion

Drug Discovery Today 

FIGURE 1

A suggested integrated workflow for combined use of data-mining, (Q)SAR and read-across methods. Abbreviation: (Q)SAR: quantitative structure activity
relationships.
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well known fragment that triggers a structural alert for carcino-

genicity, but if a chemical containing this fragment has very low

exposure or bioavailability, it is questionable whether this predic-

tion will be realised. Therefore, whenever possible, internal expo-

sure (i.e. the amount taken up and distributed as free plasma

concentration within an organism) should be taken into account

by using either in silico or in vitro ADME data. Ideally, results of

predictions should be combined with other evidence and data for

consideration for the risk assessments.

Another limitation for most of the current (Q)SAR approaches is

that they mostly do not consider metabolites of the parent che-

micals, this is usually true for endpoints like hERG, skin sensitisa-

tion, among others [34,35]. When properties are calculated for

prediction of a toxicology endpoint, it is usually conducted on a

parent chemical structure, whereas it could be a metabolite which

is responsible for the toxicity. However, clearance by metabolism

can also have an important role in the actual exposure to a given

chemical. Safety guidance has been produced, with triggers for

concern based on the abundance of metabolites relative to total

material or relative to parent material levels [48,49]. Others have

proposed a strategy in which absolute exposure to metabolites

(rather than a relative comparison with parent or total drug-related

material) in humans triggers further consideration of metabolite

safety [50]. It is possible to predict metabolites using several

computational approaches (METASITE [51], METEOR [52], Meta-

print2D [53], among others). However, it should be noted that the

majority of these methods simply predict qualitatively the meta-

bolites that could be formed and do not estimate the probability or

amount of each metabolite being formed.

By definition, all of these in silico models for toxicity are simula-

tions of reality; the interplay of complex physiological processes
Please cite this article in press as: S.. Modi, et al., The value of in silico chemistry in the safety a
Today (2011), doi:10.1016/j.drudis.2011.10.022
that lead to toxicity presents a real challenge for creating reliable

predictive models [5]. But greater confidence can be obtained if all

other possible information, including limitations of models,

applicability domain, metabolites and exposure are combined

together for the risk assessments [42,47].

Concluding remarks
Experimentalists generally prefer to generate ‘wet’ data on all the

chemicals, irrespective of what the odds of success might be in

terms of late-stage failures. With a lack of confidence in the

accuracy of a predictive model, in silico tools tend to carry little

weight in a risk assessment. As a result, the level of acceptance of

predictions by users outside the computational chemistry and

modelling groups tends to be low. There is need to be transparent

wherever possible and modelling methods need to be chosen

carefully, including confidence factors and reasoning behind each

of the predictions. Every modeller must be encouraged to promote

their use in the context of realistic expectations of these tools.

Modellers need to do more than just generate large numbers of

data points, they need to work within multi-disciplined program

teams to provide the support needed for the decision-making

process in a project. As more and more validated case examples

are passed through these different in silico approaches it might

help in gaining confidence and understanding of these tools

[19,54,55].

Keeping all the above in mind, it is not surprising that the

acceptance of these predictive tools continues to be difficult, but if

the existing issues can be appropriately addressed, it might even-

tually be well worth the effort. In addition there are commercial

and consumer pressure to find and use alternatives for less envir-

onmental impact and also less animal testing. Therefore an
ssessment of chemicals in the consumer goods and pharmaceutical industries, Drug Discov
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opportunity exists for these in silico methods to demonstrate real

value as part of a suite of alternative technologies and gain public

support of this area of science.

There is also need for computational chemistry tools to align

with other information sources (e.g. from systems biology, hazard,

metabolites and exposure) to develop real or virtual models of

tissues, organs and physiological processes that could be used for

the toxicological assessments. For toxicity assessments, informa-

tion from other sources could be applied as part of a tiered system

along with predictions from computational tools. As suggested in

Fig. 2, the first tier could be used for alerts, (Q)SAR and read-across

methods could be used for hazard identification. These tools might

represent a fast method and filter to enrich a biological screen with

desired ADMET profile. Indeed, many major pharmaceutical com-

panies have already adopted virtual screening methodologies to

complement in vitro HTS methods [56,57].

It is also important for these tools to move beyond hazard

rankings and possibly move towards estimation of in vivo

responses based on in vitro or in silico data. As discussed above

predictions based just on in silico for prioritising chemicals might

over- or under-estimate the potential risk of these chemicals owing

to differences in bioavailability, clearance and exposure. Physio-

logically based pharmacokinetic (PBPK) models can take in vitro

and in silico data inputs and can predict concentration versus time

profiles. It has been shown in the past that PBPK models are
Please cite this article in press as: S.. Modi, et al., The value of in silico chemistry in the safety a
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superior to other more empirical methods for interspecies scaling

and prediction of human pharmacokinetics [58]. This approach

could be the second tier described in Fig. 2 integrating both

dosimetry and human exposure information with the in silico,

high-throughput, toxicity screening data to provide a better safety

risk assessment. A recent article [59] has shown the combined use

of experimental assays, computational tools, and exposure assess-

ment by performing analysis on a subset of 35 ToxCast chemicals.

Understanding the different mechanisms of how chemicals can

affect biological structures, processes and pathways and thus can

impact on physiological response is an important aspect of tox-

icology. This knowledge can help to predict the toxicity of che-

micals, and it is also possible to plan ways to prevent exposure to

toxic compounds and develop ways to antagonise the effects of the

toxins. Both the complexity in the biological response and the lack

of public availability for mechanistic data that can be modelled to

relevant structural information are reasons that in silico

approaches to date have had limited success in delivering in vivo

relevant predications. In view of this, the European commission

Seventh Framework Programme (FP7) research joint technology

programmes, the Innovative Medicines Initiative (IMI: http://

www.imi.europa.eu/) funded with the European Federation of

Pharmaceutical Industries and Associations (EFPIA) and the Safety

Evaluation Ultimately Replacing Animal Testing (SEURAT1) pro-

ject (Colipa: http://www.colipa.eu/news-a-events.html) funded
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with European Cosmetic, Toiletry and Perfumery Association

(Colipa), have undertaken several projects, such as eTox, Expert

Systems for in silico Toxicity, and COSMOS. These programmes

although focussed on different end goals of improving the effi-

ciency of drug development (IMI) and non-animal alternatives to

repeat dose toxicity respectively (SEURAT-1) they both aim to

deliver improvements in the modelling of early prediction of in

vivo human toxicity based on information and data available

during early stages of the innovation pipeline. Furthermore

mechanistic understanding of human toxicity forms [60] a central

component of the National Research Council of the National

Academies (NRC) vision and roadmap as described in ‘Toxicity

Testing in 21st Century (TT21C): A Vision and a Strategy’ [61]. This

vision is summarised as follows: ‘Advances in toxicogenomics,

bioinformatics, systems biology, epigenetics and computational

toxicology could transform toxicity testing from a system based on

whole-animal testing to one founded primarily on in vitro methods

that evaluate changes in biologic processes using cells, cell lines, or

cellular components, preferably of human origin.’ The national

toxicology programme (NTP) HTS initiative and the U.S. Environ-

mental Protection Agency (EPA) Toxcast program [59,62] are two

efforts that aim to utilise the technological advances in molecular

biology and computational science. These aim to identify toxico-

logical testing screens for mechanistic targets active within cellular

pathways considered crucial to adverse health effects, such as

carcinogenicity, reproductive and developmental toxicity, geno-

toxicity, neurotoxicity, and immunotoxicity in humans. How-

ever, one of the main outstanding issues remains that knowing

that changes in biological processes and perturbation in pathways

occur might not be good enough: we need to define how much

change is really required for a chemical to cause an adverse effect.

These in silico techniques and preclinical testing (in vitro) serve a

fundamental role in characterising of the potential risks associated

with chemicals. However, serious and sometimes rare and unex-

pected adverse events might be observed in clinical trials or post-

approval, suggesting that crucial gaps exist in our understanding

of the relationship between patient response and preclinical tox-

icology findings [12,13]. For example, non-clinical safety assess-

ment are often conducted in normal healthy test systems and

tends to be exposure-based; it does not attempt to evaluate the

possible risk of rare or idiosyncratic responses that might arise

from potential interactions with the presence or progression of

disease or the genetic background or other exposures of patients

and consumers. Therefore to improve the predictions of chemical
Please cite this article in press as: S.. Modi, et al., The value of in silico chemistry in the safety a
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safety several programmes mentioned above (e.g. TT21C, COS-

MOS, ToxCast, among others) have been started to gain a better

understanding of toxicity mechanisms by evaluating safety assess-

ment data at multiple levels of biological organisation, including

genes, proteins, pathways and cell/organ function. There is also

need to develop computer models of cells, organs and system and

develop clinical trial simulation models that can reveal interac-

tions between drug or device effects, patient characteristics, and

disease variables influencing outcomes [63]. As more and more

case examples are passed through these different in silico

approaches it might help to gain more understanding on how

these should be linked together.

There is still a need for new methods to rapidly and accurately

determine the toxic potential of both drug molecules and mole-

cules contained in consumer product goods. In silico toxicology

models, such as those discussed in this article, fit many of these

criteria, and have seen widespread use in drug discovery applica-

tions. It should also be acknowledged that in silico tools have

been in existence for a relatively short time compared with in

vitro or in vivo methods, and have only taken up a pace in past 10

years. As these tools become increasingly user-friendly and

transparent, and as more examples of successful applications

are shown, it seems highly probable that in silico approaches

might evolve rapidly. Meanwhile, modellers need to ensure that

these tools are used appropriately and expectations of users are

not raised above what a model can deliver. Rather than just a

static tool sitting on its own in one corner it needs to be

integrated with safety assessments and discovery programmes.

By working alongside drug discovery programmes and with

constant validation of these in silico methods against in vitro

and in vivo data, predictive chemistry can become an increasingly

important part of the decision-making process. Where possible

as much information as possible needs to be integrated as

required for individual toxicity assessments and used as part

of a weight of evidence approach to calculate risk to the con-

sumer. At present we have most of the individual components

for building a platform for virtual models of tissues, organs and

physiological processes that could be used for the toxicological

assessments, but one of the main challenges will not be to see

how these different components from different disciplines fit

together. As discussed above, as more and more examples and

case studies are pushed through we might become better and

better in gaining knowledge and learn from these information

rich technologies.
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