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One approach to speed up drug discovery is to examine new uses for
existing approved drugs, so-called ‘drug repositioning’ or ‘drug
repurposing’, which has become increasingly popular in recent years.
Analysis of the literature reveals many examples of US Food and Drug
Administration-approved drugs that are active against multiple targets
(also termed promiscuity) that can also be used to therapeutic advantage
for repositioning for other neglected and rare diseases. Using proof-of-
principle examples, we suggest here that with current in silico technologies
and databases of the structures and biological activities of chemical
compounds (drugs) and related data, as well as close integration with in
vitro screening data, improved opportunities for drug repurposing will
emerge for neglected or rare/orphan diseases.

Introduction

Neglected diseases are primarily tropical infections common in Africa, Asia and the Americas.
Infections with Mpycobacterium tuberculosis (Mtb) or Plasmodium spp. are often included as
neglected diseases and are estimated to kill over two million people annually [1]. Recent studies
also suggest that over two billion individuals are infected with Mtb alone [2] and this represents
approximately one-third of the global population. These statistics highlight the enormous
economic and healthcare challenges for the countries and governments affected.

There are also thousands of diseases that occur in small patient populations and are not
addressed by any existing treatments (http://rarediseases.info.nih.gov/Resources/Rare_Diseases_
Information.aspx). These diseases are classified as rare or orphan diseases. Traditionally, such
diseases have not been the focus of big pharmaceutical company research as they have small
patient populations in industrialized countries that make it difficult to market drugs that recoup
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the cost of research and development and that are then profitable
over the long term. Consequently, drug discovery for neglected and
rare diseases has occurred mainly in biotech companies and acade-
mia. Rare diseases usually have small patient populations, although
there is no global agreement on what this size is. In the USA, a rare
disease is described as one that affects less than 200 000 people.
Some estimates suggest that this represents over 7000 rare diseases
affecting 25-30 million people [3] or 5000 patients per orphan
disease, with approximately 4000 orphan diseases needing treat-
ment [4]. Such a ‘small’ market size would make drugs for these
diseases less marketable compared with common diseases, such as
cancers, cardiovascular disease and diabetes, with sufferers treated
numbering in the millions annually. However, some have suggested
that profits can be made on smaller patient populations in a perso-
nalized medicine strategy and have called for more academia-
pharma collaborations that are focused on rare diseases [4].

There are considerable challenges with regards to clinical
research applied to rare diseases. Even though over 300 orphan
drugs have been approved since the passage of the US Orphan
Drugs Act in 1983, there is still a long way to go until most rare
diseases have a treatment [3,4].

Neglected and rare diseases as an attractive area for
pharmaceutical companies

Pharmaceutical companies are beginning to view rare or neglected
diseases as an opportunity to bring in more revenue as well as to
improve public relations. Developing treatments for rare or
orphan diseases might necessitate a smaller investment upfront
as, for example, in-licensing deals for an advanced therapeutic
candidate targeting this area are usually less costly than the typical
US$100s of millions for licensing drugs for other diseases (http://
www.crdnetwork.org/blog/big-pharma-moves-from-blockbusters-
to-niche-busters/). Recently, GlaxoSmithKline (GSK) made some
relatively small investments in rare diseases (http://cenblog.org/
the-haystack/2010/10/gsk-highlights-rare-diseases—approach/);
Pfizer (http://www.xconomy.com/boston/2010/09/01/pfizer-
gobbles-foldrx-in-big-pharmas-latest-rare-disease-play-in-boston—
area/) and several other large pharma companies, as well as the
World Health Organization, have been working together, invest-
ing US$150 million in research into neglected disease treatments
(http://thebigredbiotechblog.typepad.com/the-big-red-biotech-
blog/2010/10/big-pharma-and-governments-put-up-150-m-to-
fight-neglected—diseases.html).

These efforts might only be the tip of the iceberg, and more
substantial investments are likely to follow in the near future to
solidify the trend. These investments by pharma for rare diseases
are in addition to their significant investments in neglected or
tropical diseases represented by the GSK Tres Cantos facility
(http://www.gsk.com/collaborations/tres-cantos.htm), the Novar-
tis Institute for Tropical Diseases in Singapore (http://www.novartis.
com/research/nitd/index.shtml), the Lilly MDR-TB Partnership
(http://www lillymdr-tb.com/), the Lilly TB Drug Discovery Initia-
tive (http://www.tbdrugdiscovery.org/) and The Critical Path to TB
Drug Regimens (http://www.tballiance.org/cptr/).

Drug repositioning
One approach to speeding up drug discovery is to find new uses for
existing approved drugs. This is termed ‘drug repositioning’ or

‘drug repurposing’, and traditionally has occurred by serendipity
[S]. Another strategy is to look at combinations of approved drugs
in the hope of finding synergy [6,7], an approach that has found
some success in cancer, HIV and Mtb treatments. In the neglected
and rare disease space, predominantly academic researchers have
looked at repositioning compounds that are already approved for
other indications (see references in Table 1 and Table 2). Drug
repositioning has been reviewed extensively in the context of
finding uses for drugs applied to major diseases, such as obesity
and Parkinson’s disease [4]. Well-known examples include drugs
such as thalidomide, sildenafil, bupropion and fluoxetine, which
found new uses beyond their initially approved therapeutic indi-
cations [5]. The example of thalidomide specifically suggests that
drugs that were originally withdrawn by manufacturers or
removed by the US Food and Drug Administration (FDA), or other
regulatory organizations, can be resurrected. Thalidomide was
notorious for causing birth defects if taken during the first trime-
ster of pregnancy. However, this adverse effect is not a major issue
in the novel use of thalidomide in treating multiple myeloma, a
disease that is not common in women of child-bearing age.

Benefits for pharma

For pharmaceutical companies, repositioning has significant com-
mercial value as it extends the markets for a compound and finds
new uses for shelved compounds at lower financial risk and in a
shorter time [8]. There has also been much discussion about how
different approaches to repositioning could work, but these have
not focused specifically on neglected diseases [5,9]. Others have
proposed that repurposing could be an invaluable tool for
neglected diseases [10]. The benefits of repositioning include:
working on known druggable targets, the availability of materials
and data (such as on long-term toxicology studies) that can be used
and presented to regulatory authorities; and, as a result, the
potential for a significantly more time- and cost-effective research
and development effort than typically seen with bringing a new
molecular entity to market.

Repositioning for neglected infectious diseases

In both the major-market and neglected infectious disease realms,
the rapid emergence of multidrug-resistant strains of pathogenic
microorganisms provides a sense of urgency to identify new scaf-
folds for antibiotics quickly. This is likely to require the explora-
tion of chemical space beyond known active antimicrobial
compounds. Pharma urgently needs new hits to initiate com-
pound optimization studies. However, productivity of novel anti-
biotic classes over the past 30-40 years has been extremely low and
this is exacerbated by the relatively low hit rates from high-
throughput screening (HTS) and secondary screens [11]. Several
new scaffold search efforts have been recently reviewed [12]. For
example, Pfizer has shown that pyridopyrimidine compounds
derived from a eukaryotic protein kinase inhibitor pharmacophore
were effective against gram-negative pathogens following whole-
cell screening [13]. The approach is an example of screening library
repurposing (counterbalancing the pessimism derived from
recently reported antibacterial-targeted screening efforts [11])
and illustrates the pursuit of bacterial targets with high sequence
or structural similarity to eukaryotic targets, in this case the
bacterial and eukaryotic kinomes. The Pfizer researchers proposed
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TABLE 1

Examples of approved drug molecules identified using low-throughput screening methods as having effects against diseases other than
the original target®

Molecule Original use New use Method of discovery Refs
Aprepitant Nausea: NK-1 receptor Drug-resistant HIV-1 infection: Initial hypothesis tested with another [99,100]
antagonist downregulates CCR5 in macrophages NK-1 receptor antagonist in vitro
Cryptosporidiosis in Tested in vivo in immunosuppressed [101]
immunosuppressed hosts mice infected with Cryptosporidium
parvum; decreased substance P levels
Amiodarone Class Ill anti-arrhythmic Chagas disease: blocks Literature search [102]
ergosterol biosynthesis
Glybenclamide Antidiabetic Antithrombotic activity in Common pharmacophore with an [103]
mouse models ICso 9.6 pM experimental TP receptor antagonist
5Q29,548
Tamoxifen Antiestrogen Anti-protozoal: Leishmania Focused screening to test hypothesis [104,105]
amazonensis ICso 11.1-16.4 pM and in vivo mice studies
Trimetrexate Antifolate used in Pneumocystis Inhibitor of Trypanosoma cruzi Enzyme activity and antiparasite [106]
carinii infection in patients DHFR ICs0 6.6 NM activity assays for one compound
with AIDS
Riluzole Amyotrophic lateral sclerosis: Currently in clinical trials for treating Treatment of GRM1-positive human [107]
inhibits glutamate release melanoma, but might have activity melanoma cells reduced levels of
and reuptake against other cancers released glutamate, suppressed
melanoma cell growth and also
suppressed tumor growth in xenograft
model; induced cell cycle arrest,
leading to apoptosis
Sertraline Antidepressant (selective Neuroprotective, prolongs survival, Previously shown that another [108]

serotonin reuptake inhibitor)

improves motor performance and
ameliorates brain atrophy in the
R6/2 HD model

SSRI was neuroprotective

2 Abbreviations: CCR5, chemokine receptor 5; DHFR, dihydrofolate reductase; GRM1, glutamate receptor, metabotropic 1; NK-1, neurokinin-1 receptor; SSRI, selective serotonin reuptake

inhibitors.

that targets with high sequence and structural homology to
known human drug targets are more likely to find inhibitors in
the compound libraries. Others have suggested that the libraries of
inhibitors for ion channel and prenyltransferases would be a good
starting point for such library repurposing [14] and for finding
chemotypes for novel antimicrobials.

It is unclear how extensively approved drugs are screened
against multidrug-resistant strains of bacteria and it might be
possible to find new acceptable treatments among them. Clearly,
more could be done to reposition existing FDA-approved drugs,
and the following sections survey these efforts to find new activ-
ities. To date, these studies have traditionally focused on in vitro
screening; however, computational screening (‘in silico’ [15])
methods might also be applicable. Hence, it is proposed that a
combined in silico—in vitro approach leveraging databases of mole-
cular structures and their related information from the literature
[such as absorption, distribution, metabolism, and excretion
(ADME)/Tox [16], targets, clinical trials, etc.] could be a viable
strategy for accelerating research in the treatment and prevention
of rare, neglected and common diseases.

Searching FDA-approved drugs for new activities

Using HTS

It is suggested that there are over 10 000 drugs that have been
tested in clinical medicine. This could be reduced to approxi-
mately 9000, given that many represent combinations of other

drugs, different salt forms of the same molecule, or biologics (large
proteins or antibodies) [17]. However, a physical library of this size
does not exist for known drugs that could be screened and a virtual
library of these compounds is also lacking (to our knowledge).
Such a virtual library could be assembled using some of the public
domain databases.

Some companies, such as Cerep (http://www.cerep.fr), have
screened 2500 of the FDA drugs and reference compounds against
159 enzymes, receptors, ion channels and transporters, and have
created a database called BioPrint [18], which is a commercial
product with a cost that is likely to be out of reach of most
academic researchers. To date, multiple groups have screened
1000-2000 drugs against different targets or cell types. The John
Hopkins Clinical Compound Library (JHCCL) consists of plated
compounds available for screening at a relatively small charge and
has been used by some groups [19]. For example, 17 novel inhi-
bitors of Mtb were found after screening 1514 compounds from
the JHCCL [19]. Several new uses for FDA-approved drugs have
been identified by screening this or other commercially available
libraries of drugs or off-patent molecules (e.g. the Microsource US
Drug Collection and Prestwick Chemical library) (Table 2). The
accumulation of large databases of published data and compounds
screened against G-protein coupled receptors (GPCRs), such as the
psychoactive drug screening program (PDSP) receptorome profile,
represent good starting points for finding compounds that are
active against receptors of interest. One example described is a
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TABLE 2

Examples of approved drug molecules identified using HTS or in silico screening methods as having effects against diseases other than

original target®

Molecule Original use New use Method of discovery Refs
Itraconazole Antifungal: lanosterol Inhibition of angiogenesis by In vitro HUVEC proliferation [109]
14a-demethylase inhibitor inhibiting human lanosterol screen against FDA-approved
14a-demethylase; ICso 160 nM drugs (JHCCL)
Astemizole Non-sedating antihistamine Antimalarial 1Cso 227 nM against In vitro screen for P. falciparum [110]
(removed from US market Plasmodium falciparum 3D7 growth of 1937 FDA-approved
by FDA in 1999) drugs (JHCCL)
Mycophenolic acid Immunosuppressive Inhibition of angiogenesis by In vitro HUVEC proliferation [111]
drug: inhibits guanine targeting type 1 inosine screen of 2450 FDA- and
nucleotide biosynthesis monophosphate dehydrogenase; foreign-approved drugs (JHCCL)
IC50 99.2 nM
Entacapone and tolcapone Parkinson’s Disease: Antitubercular: entacapone inhibits Used a chemical systems biology [77]
catechol-O-methyltransferase  InhA; IC5o 80 pM approach
inhibitors
Nitazoxanide Infections caused by Giardia  Antitubercular: multiple potential Screens against replicating and [112]
and Cryptosporidium spp. targets non-replicating Mtb
(£)-2-amino-3- Human metabolite, Antimalarial: inhibits HSP-90; 1C5, HTS screening of 4000 compounds [113]
phosphonopropionic acid mGIuR agonist 0.06 wM against P. falciparum 3D7
Acrisorcin Antifungal Antimalarial: inhibits HSP-90; 1Cs, HTS screening of 4000 compounds [113]
0.05 wM against P. falciparum 3D7
Harmine Anticancer Antimalarial: inhibits HSP-90; ICsq HTS screening of 4000 compounds [113]
0.05 wM against P. falciparum 3D7
Acetophenazine, fluphenazine Antipsychotics-D2 Human androgen receptor Docking of known drugs into [96]

and periciazine

and 5-HT, inhibitors

antagonists acetophenazine
(Ki 0.8 wM), fluphenazine(K;
0.8 wM), periciazine (K; 3.0 uM)

androgen receptor followed by
in vitro screening

Levofloxacin, gatifloxacin, DNA gyrase Active against ATCC17978; inactive Screening of 1040 drugs from [114]
sarafloxacin, moxifloxacin against BAA-1605 MIC <0.03-0.04 microsource drugs library versus
and gemifloxacin (mg/l) Acinetobacter baumannii
Bithional, bortezomib, Various NF-kB inhibitors; ICso 0.02-39.8 uM Screening of NCGC pharmaceutical [115]
cantharidin, chromomycin A3, collection of 2816 small molecules
duanorubicin, digitoxin, in vitro
ectinascidin 743, emetine,
fluorosalen, manidipine HCI,
narasin, lestaurtinib, ouabain,
sorafenib tosylate,
sunitinib malate, tioconazole,
tribromsalen, triclabendazolum
and zafirlukast
Pyrvinium pamoate Anthelmintic Antitubercular: Alamar blue assay In vitro screen against 1514 known [19]

MIC 0.31 M

Anti-protozoal: Cryptosporidium
parvum 1Csg 354 nM

Anti-protozoal: against Trypanosoma
brucei;lCso 3 pM

drugs; many other previously
unidentified hits found

In vitro screen for P. falciparum
growth of 1937 FDA-approved
drugs hypothesized to be active
because they are confined to
intestinal epithelium

Screening of 2160 FDA-approved
drugs and natural products from
Microsource; 15 other drugs active;
1C50 0.2-3.0 pM

[117]

Riluzole ALS: inhibits glutamate Enhanced Wnt/B-catenin signaling Screening of 1857 compounds (1500  [118]
release and reuptake in both the primary screen in HT22 unique) in vitro; treating melanoma
neuronal cells and in adult cells with riluzole in vitro enhanced
hippocampal progenitor cells; GRM1  the ability of WNT3A to regulate
regulates Wnt/B-catenin signaling gene expression
Closantel A veterinary anthelmintic Onchocerciasis (river blindness); Screening of 1514 FDA-approved [119]

with known proton
ionophore activities

ICso 1.6 wm; K; 468 nM

drugs (JHCCL) against the chitinase
OVCHT1 from Onchocerca volvulus
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TABLE 2 (Continued)

Molecule Original use New use Method of discovery Refs
Nitroxoline Antibiotic used outside Antiangiogenic agent inhibits Screening of 2687 FDA-approved [120]
USA for urinary tract MetAP2 (ICso 54.8 nM) and HUVEC drugs (JHCCL) for inhibition of
infections proliferation; also inhibits sirtuin 1 HUVEC cells; also found the same
(ICsp 20.2 uM) and sirtuin 2 (ICsq compound in HTS of 175 000
15.5 uM) compounds screened against
MetAP2; active in mouse and
human tumor growth models
Glafenine Analgesic Inhibits ABCG2 (ICso 3.2 uM); could Screening of FDA-approved drugs [121]
be used with chemotherapeutic (JHCCL) with bioluminescence
agents to counteract tumor imaging HTS assay; discovered
resistance 37 previously unknown ABCG2
inhibitors
Tiagabine Antiepileptic (enhances Neuroprotective in N171-82Q and Initial screen of NINDS Microsource [122]
gamma-aminobutyric R6/2 mouse models of HD database of drugs (1040 molecules)
acid activity) against PC12 cell model of HD
found nipecotic acid, which is
related to tiagabine
Digoxin, oubain and Cardiac glycosides used Anticancer: inhibition of hypoxia- 3120 FDA-approved drugs (JHCCL) [123]
proscillardin A to treat congestive heart inducible factor 1; ICsq <400 nM screened against reporter cell line
failure and arrhythmia Hep3B-c1; digoxin also tested
in in vivo xenograft models
Tacrine, carvedilol, Acetylcholinesterase Prevention of hearing loss: lowest Initial screen of NINDS Microsource [124]
hexamethyleneamiloride inhibitor, B,-adrenergic dose tested that shows protection is  database of drugs (1040 molecules)
and phenoxybenzamine blocker, diuretic, 10 pM against neomycin induced hair cells
ay-adrenergic blocker, in zebrafish. Tacrine was also active
respectively in mouse utricle
Ceftriaxone B-lactam antibiotic Neuroprotection. ALS: increases Screen of NINDS Microsource
GLT1 expression; ECso 3.5 wM. Other  database of drugs (1040 molecules)
B-lactams also active against rat spinal cord cultures
followed by immunoblot for GLT1
protein expression. Also tested in
ALS mouse model: delayed neuron
loss and increased survival
Flufenamic acid Non-steroidal Familial amyloid polyneuropathy: Screening library not described [125]

anti-inflammatory
drug

inhibits transthyretin

@ Abbreviations: ABCG2, ATP-binding cassette sub-family G member 2; ALS, amyotrophic lateral sclerosis; GLT1, glutamate transporter 1; GRM1, metabotropic glutamate receptor; HSP-900,
heat shock protein 90; HD, Huntingdon'’s disease; HUVEC, human umbilical vein endothelial cells; InHa, inhibin, alpha; MetAP2, type 2 methionine aminopeptidase; mGIuR, metabotropic
glutamate receptor; NCGC, National Clinical Guideline Centre; NF, nuclear factor; NINDS, National Institute of Neurological Disorders and Stroke.

potent 5-HT, 4 ligand that could block the JC virus [20], which can
cause the neurologic disease progressive multifocal leukoencepha-
lopathy if untreated. A second example suggested side effects for
known drugs mediated by the 5-HT,p receptor [20]. The number of
examples of groups finding new uses for approved drugs by HTS
appears to be growing (Table 2) on a laboratory-by-laboratory
basis. It is intriguing to ponder whether an organized effort to
screen experimentally the set of all known drugs against all known
targets validated for a given disease would be feasible. Certainly,
the potential for success with one disease, let alone many human
diseases, appears to be significant.

Using in silico methods

In silico methods, including target- and ligand-based strategies, are
an excellent complement to experimental techniques, and are
widely used in industry and academia [15,21]. There have been
many studies establishing relationships between ligand molecular
structures and broad biological activities, both on and off target
[22-25]. Several examples using pharmacophore-based studies and
searching databases of FDA drugs [26] to find new transporter

inhibitors in vitro, represent attempts at understanding off-target
effects, which is analogous to drug repositioning. For example,
pharmacophores for various transporters, such as the human
peptide transporter 1 (hPEPT1) [27], P-glycoprotein (P-gp) [28],
the human organic cation/carnitine transporter (hOCTN2) [29,30]
(Fig. 1) and the human apical sodium-dependent bile acid trans-
porter (ASBT) [31], have been used to search a subset of FDA-
approved drugs compiled from A Small Physician’s Handbook
(SCUT, structures available as a supplemental file) [26] and to
identify previously unknown inhibitors based on in vitro testing
(Table 3). Interestingly, for each transporter, inhibitors were found
that belonged to different therapeutic classes and these repre-
sented molecules with overlapping pharmacophores. What has
not been examined to date is whether the distinct therapeutic class
hits for a single transporter are also shared by other common
biological activities. These transporters were selected because of
the inhibition of hPEPT1 or P-gp involved in drug-drug interac-
tions [28], the putative role of hOCTN2 inhibition in rhabdomyo-
lysis [29,30] and the potential for drugs inhibiting ASBT to
promote several adverse drug reactions (ADRs), including colon
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Transporter pharmacophores for hOCTN2. (a) Cetirizine. (b) Cetirizine mapped to a catalyst pharmacophore based on three actives and two inactives for OCTN2
[30]. The pharmacophore contains two hydrophobic features (cyan) and a positive ionizable feature (red). () Cetirizine mapping to a catalyst pharmacophore
derived from 22 drugs with K; data for OCTN2 (observed and predicted data described in [29]). The pharmacophore contains two hydrophobic features (cyan), a
hydrogen-bond acceptor (green) and a positive ionizable feature (red).

TABLE 3

FDA-approved compounds found by an in silico-in vitro approach to inhibit transporters®

Compounds

Transporter Biological effect

Pharmacophore features Refs

Aspartame, fluvastatin and repaglinide

hPEPT1 Inhibit uptake of natural

substrates and other drugs
that are substrates

Two hydrophobic and one hydrogen [27]
bond acceptor; one hydrogen bond
donor; one negative ionizable feature

Acitretin, cholecalciferol, misoprostol, nafcillin,
repaglinide, salmeterol and telmisartan

P-gp Decrease clearance of drugs by

inhibiting efflux into intestine
of P-gp substrates.

Three hydrophobic features [28]
and two hydrogen bond
acceptor features

Thioridazine, vinblastine, clozapine, amlodipine, OCTN2 Inhibition may cause Three hydrophobic features [30]
gefitinib, trifluoperazine, dibucaine, tamoxifen, rhabdomyolysis. and one positive ionizable feature [29]
amiodarone, atracurium, nefazodone, argatroban, Two hydrophobic features,
nelfinavir, proclorperazine, raloxifene, metoclopramide, one positive ionizable feature
desloratidine, duloxetine, carvedilol, olanzapine, and one hydrogen bond acceptor.
amitriptyline, imatinib, desipramine, quinine,
quinidine, haloperidol and bromocriptine

Nimodipine, fluvastatin, latanoprost, ASBT ASBT inhibition can cause Two hydrophobic features, two [31]

lovastatin, pentamidine, simvastatin,
pioglitazone and tioconazole

diarrhea, hyperglyceridemia,
gallstone disease and
colon cancer.

hydrogen bond acceptors and shape
restriction around mesoridazine

@ Additional examples of transporter pharmacophore searches can be found in [126].
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cancer [31]. The transporters also represent a class of proteins for
which in vitro models might be limited in throughput and where in
vivo study is even more complicated owing to the presence of
multiple transporters with overlapping substrate specificities.
Therefore, the in silico-in vitro approach has value in targeting
compounds with a high probability of activity.

Computational pharmacophores and molecular
similarity methods for drug repositioning
Pharmacophores and 3D database searching could be readily used
for drug repositioning. 2D approaches might, however, be more
readily available for both similarity and substructure searching and
have been used with success for finding metabolite mimics for Mtb
[32] and in studies to predict the cross-reactivity of drugs and drug
metabolites with immunoassays used in clinical medicine [33-36].
Common applications of immunoassays include drug of abuse
(DOA) screening, endocrinology testing and therapeutic drug
monitoring (TDM). Immunoassays can be limited by the occur-
rence of false positives (or ‘cross-reactive’ compounds). For exam-
ple, drugs with structural similarity to amphetamine and
methamphetamine, such as ephedrine and pseudoephedrine,
can cross-react with DOA screening assays designed to detect
the presence of amphetamine or methamphetamine. Diagnostic
companies manufacturing clinically used immunoassays often test
a limited number of compounds for cross-reactivity against their
immunoassay, although there is a potentially large array of com-
pounds (metabolites, herbals and environmental chemicals) that
could possibly interact. Consequently, cross-reacting compounds
are discovered on a case-by case basis [33,34].

Similarity searching examples

Computational 2D similarity (using the MDL public keys finger-
print descriptors) of test compounds to that of the antigen used in
immunoassays, has been used to predict cross reactivity [33-36].
The SCUT database of frequently used FDA-approved drugs was
used for similarity searching and was supplemented with some
metabolites of drugs (see Online Supplementary Information).
This relatively simple computational approach showed a statisti-
cally significant separation between cross-reactive and non-cross-
reactive compounds for TDM immunoassays [33,34] and DOA/
toxicology immunoassays [35,36]; the approach was further used
to identify novel inhibitors of DOA/toxicology immunoassays
[36]. These examples show how in silico methods can build on
existing data and focus in vitro testing.

The examples above also illustrate how 2D similarity alone
might be useful for finding compounds that could have pharma-
cophore features that are similar to those of other drugs. This raises
the question of whether such similar molecules might share over-
lapping biological activities. Simple similarity searching could be a
component of a compound-repositioning strategy, using compu-
tational methods to predict probable cross-reactive compounds by
similarity followed by a quick confirmation with immunoassays
that are commercially available. Other computational approaches
comparable to searching by similarity, such as those involving
LASSO descriptors [37], can make use of large, publicly available,
databases, such as ChemSpider [38], to compare existing drugs
with virtual libraries. Comparable methods, such as PASS (predic-
tion of activity spectrum for substances) could also be used to

predict potential new bioactivities for existing drugs [39]. Com-
putational methods that account for molecular shape might be
generally useful for searching for compounds with common bioac-
tivity [40]. Molecular docking is one example that has been used
successfully to find molecules with complementary shape and
electrostatic interactions with known protein active sites. For
example, docking approaches have been used to dock 1055 known
drugs (from DrugBank) into 78 unique human drug targets and the
authors found 52 interactions of interest (although no experi-
mental verification was reported) [41].

Using networks and systems biology for drug
repositioning

During the past decade, understanding of biological mechanisms
has been significantly enhanced by the curation of vast ligand-
and protein-protein interaction databases and the use of top-
down and bottom-up network modeling leading to a systems
biology approach [42-46]. During the past five years alone, 2D
ligand-based approaches have been increasingly used along with
sophisticated algorithms and networks. This approach has been
used for drug repositioning and for understanding the off-target
effects of drugs. Fliri et al. used biological spectra for a cross section
of the proteome [47]. They implemented hierarchical clustering of
the biological activity spectra similarity and created a relationship
between structure and bioactivity before extending this to identify
receptor agonist and antagonist profiles [48]. The same group from
Pfizer took this concept further and applied a probabilistic
approach to link adverse effects for drugs with biological spectra
(similar molecules had overlapping profiles, in the same way that
they had similar biological spectra), thus linking preclinical with
clinical effects [49].

Promiscuity networks and insights for repositioning

There have been many efforts to look at compound or protein
promiscuity or polypharmacology that could lead to the discovery
of new uses for existing molecules. Specifically, there has been
considerable discussion of predicting undesirable drug interac-
tions with promiscuous proteins in silico. This is a particular issue
for hydrophobic compounds that might bind to cytochrome P450
(CYP) 3A4, the pregnane X receptor (PXR), P-gp or the human
ether-a-go-go-related gene (hERG) [50]. Quantitative structure-—
activity relationship (QSAR) models for these proteins have been
used to predict potential molecule protein interactions and then
visualize this as a node on a network, simultaneously showing
other endogenous and exogenous ligand-protein interactions
[45,46,51] as well as allowing overlay of any gene expression or
other high content data [52-54]. Such an approach could be useful
for ensuring that repurposed compounds do not have negative
effects on biological networks through binding other off-targets. A
global mapping of pharmacological space focusing on a polyphar-
macology network of 200 000 molecules with activity against 698
proteins has also been produced [55]. A further published study
created a drug-target network of approved drug data for 890
molecules from DrugBank [56] and OMIM (http://www.ncbi.nlm.
nih.gov/omim), with over half of these molecules forming the
largest connected network with multiple target proteins (also
illustrating polypharmacology or promiscuity) [57]. Such net-
works might help understand probable nodes involved in toxicity
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and add to the similarity maps for enzymes and receptors [58] and
human polypharmacology networks [S5] that have also been
developed to date. A recent study from Abbott introduced a
sequence-independent kinome inhibitor interaction map [59],
whereas another study established links between over 44 000 small
molecules and 160 cardiovascular targets, with kinases having, on
average, seven connections to cardiovascular targets [60]. An
example from Berg ef al. has merged chemical target and pathway
toxicity mechanisms that can be defined from profiling in primary
human cell systems covering many readouts and enabling known
reference compounds to be mapped by functional similarity [61].

Using chemical substructures to understand side effects and
assist repositioning

A complimentary approach taken by a group at Novartis uses
chemical substructures relevant for toxicology-related adverse
effects [62] for approximately 4000 molecules with side-effect
information from the World Drug Index. The same group related
promiscuity of compounds to their safety [63]: for a given com-
pound, the number of biological targets inhibited to a significant
extent typically correlates with a higher incidence of effects. More
recently, the group has related over 4000 MedDRA (http://
www.meddramsso.com/) terms for ADRs for over 1800 drugs using
the ECFP_4 descriptors and Bayesian models [64,65]. This resulted
in a map of ADRs in chemical space and an approach that could be
used to predict, in silico, the ADR likelihood for new molecules
based on substructures. Interestingly, the recent similarity ensem-
ble analysis described by Keiser et al. also used the ECFP_4 descrip-
tors and Bayesian models to predict off-target effects of 3665 FDA-
approved drugs and investigational compounds [66]. This study
clearly showed the promiscuity of many compounds. Their in vitro
validation of the computational predictions focused on com-
pounds with predicted GPCR activity other than the known
targets. The approach could be particularly useful for understand-
ing the potential targets for compounds where these have been
previously unknown.

Using machine learning and databases for drug repositioning

Machine-learning models have also been applied with various
types of literature data on drugs that could also assist in their
repositioning. Decision tree induction has been used to predict the
adverse drug reactions for 507 drugs from the Swiss Drugs Registry,
and resulted in models that looked internally predictive [67]. A
machine-learning method has also been used with a set of 390
drugs to demonstrate that anatomical therapeutic chemical clas-
sification, a system used for drug repurposing, can be predicted by
using a binary feature vector derived from extraction of drug
property data from text alone [68]. Chiang and Butte compiled
a drug-disease knowledge base (DrDKB) to capture the 3517 FDA-
approved drug indications and 8130 off-label uses of 2022 distinct
drugs used to treat each of 726 diseases [69]. They were able to
make 57 542 unique novel drug use suggestions and, leaving out
10-20% of the data as a test set, resulted in over 85% recovery of
the drug uses [69]. Others have generated a database called PRO-
MISCOUS (http://bioinformatics.charite.de/promiscuous/index.
php?site=drugdev) representing a set of 25000 withdrawn or
experimental drugs annotated with 21 500 drug-protein and
104 000 protein—protein relationships, using public resources

(e.g. DrugBank, SuperTarget, etc.) and text or data mining [70].
These data can be searched using a network visualization tool and
several anecdotal examples were provided of molecule or side-
effect similarity, although no prospective testing was described
[70]. Another tool suggested to be useful for drug repositioning is
IDMap, which integrates the Elsevier MDDR database, Asinex
compounds, PASS and molecular descriptors from Cerius? [71].
Text mining was used to compare PASS and MDDR bioactivity and
provide a co-occurrence frequency, although, again, no prospec-
tive testing was shown [71]

Integration of methods for repositioning

By connecting data on drugs, proteins and diseases, these various
databases, networks and computational methods might be useful
not only for understanding and identifying promiscuity, polyphar-
macology and toxicity mechanisms, but also potentially for repur-
posing molecules for new uses that could focus and accelerate in vitro
screening efforts [17,20,72-74] as previously described with trans-
porters [27-31]. For some researchers, finding molecules with man-
ageable ADRs might be useful and lead to new indications. Many of
these examples illustrate how molecules can be put into a biological
context through networks. The integration of different computa-
tional and experimental approaches along with published data
could lead to a more complete understanding than using a single
approach in isolation and could enable network-based drug dis-
covery described elsewhere [75,76]. Others have also suggested that
data integration platforms for systems biology (whether using
ligand [58,66] or binding site similarity [77]) could support reposi-
tioning and drug discovery, although no solid examples of bringing
new treatments into the clinic have been provided as yet [78].

Examples using in silico methods for drug repositioning
in neglected infectious diseases

As a proof of principle that computational methods could help
accelerate neglected disease research, a machine-learning method
has been used and validated with multiple data sets. Bayesian
classifier models are computationally fast and have been used
widely for several drug discovery applications in recent years,
including with Mtb [79]. Bayesian classification methods [80] have
been previously used for CYP, transporter and toxicity models
[31,81-84] as well as to identify substructures that are important in
recent TB screening data sets [85]. The Mtb Bayesian models
(training sets from 2000 to >200 000 molecules) have been vali-
dated with external compounds using the published National
Institute of Allergy and Infectious Diseases (NIAID), GVKbio data
sets (which include known drugs and other experimental com-
pounds) and a set of 102 000 compounds [Tuberculosis Antimi-
crobial Acquisition and Coordinating Facility (TAACF)-NIAID
cannabinoid receptor 2 (CB2)] containing 1702 molecules with
>90% inhibition at 10 pm (representing a hit rate of 1.66%) [86].
Tenfold enrichments were shown in finding active compounds in
the top-ranked 600 molecules for the TAACF-NIAID CB2 [86],
which came from the same source [84,87] as the training sets used
in the original models and represents an ideal scenario from
modeling to limit any experimental variability. The three test sets
ranged from 2880 to over 102 000 compounds. The largest test set
also contained a more realistic percentage of hits representative of
HTS screens.
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FIGURE 2

Receiver operator characteristic plot for the FDA-approved Mtb hits (n = 21)
used as a test set (n = 2108) for a previously published Bayesian model [89].
Key: purple, best rate of finding hits; yellow, Bayesian model; blue, random
rate of finding hits.

More recently, the JHCCL set of 1514 known drugs were used to
screen experimentally against Mtb and the minimum inhibitory
concentration (MIC) values determined using the Alamar blue
susceptibility assay (published by others [19]). Of the actives
identified, 21 were used as a test set in a larger set of 2108 FDA-
approved molecules downloaded from the Collaborative Drug
Discovery database (CDD) database. After removal of compounds
that were also in the Bayesian models, it was shown that the
Bayesian models initially had approximately tenfold enrichments.

TABLE 4

One model identified >60% of the drug hits in the top 14% of
compounds (S. Ekins and ]J.S. Freundlich, in press; Fig. 2). The
Bayesian models were also used to suggest drugs with a high
probability of predicted Mtb activity that could be tested in vitro
in future (S. Ekins and J.S. Freundlich, in press).

Resources for in silico repositioning of molecules for
neglected and rare diseases

cDD

If researchers are going to accelerate rare/orphan and neglected
disease research in silico, what resources are currently available and
what are still needed? One accessible tool is the CDD database [88]
with a focus on neglected diseases, which has been recently
described in detail [86,89,90]. Chris Lipinski (Melior Discovery)
provided a database of 1055 FDA-approved drugs with designated
orphan indications, sponsor name and chemical structures. In
addition, David Sullivan (Johns Hopkins University) collated
and provided a database of 2815 FDA-approved drugs. Bryan Roth
(University of North Carolina) provided the PDSP database, which
currently consists of nearly 1500 molecules structures that have
been screened against an array of GPCRs [20,58,73,74]. These data,
in addition to the >20 screening data sets for malaria and TB (Table
4), have enabled recent analysis of the physicochemical properties
of active compounds [86,91,92] and filtering with readily available
substructure alerts or ‘filters’ [86,91,92]. All these data sets allow
for free access of substructure, similarity or Boolean searches upon
registration (e.g. http://www.collaborativedrug.com/register). The
data have also been used for validating similarity searching and
pharmacophore approaches to find mimics of essential metabo-
lites for Mtb [32].

In addition, a license to CDD can enable download of data sets
that are not freely available. This might be advantageous if they
need to be searched with third-party cheminformatics software
(e.g. pharmacophore models or QSAR methods, etc.) (Fig. 3). This
suggests an additional approach for repurposing using in silico

A subset of the >20 CDD publicly available antimalarial and TB data sets®

Database name/source Description Molecules
US Army survey An extensive collection of antimalarial drug animal SAR data, including structures, bioactivity 12318
etc., published originally by the US Army in 1946
St Jude Children’s Supplemental data for [127]: structures tested in a primary screen, with additional data in eight 1524
Research Hospital protocols: Bland-Altman analysis, calculated ADMET properties, phylochemogenetic screen,
sensitivity, synergy and enzyme assays, as well as a thermal melt analysis
Novartis Malaria Data from [128] Plasmodium falciparum strains 3D7 (drug-susceptible) and W2 (chloroquine-, 5695
quinine-, pyrimethamine-, cycloguanil- and sulfadoxine-resistant), obtained from MR4, were
tested in an erythrocyte-based infection assay for susceptibility to inhibition of proliferation
by selected compounds
Johns Hopkins-Sullivan Percent inhibition of approved drugs at 10 uM 2693
MLSMR A diverse collection tested by the Southern Research Institute against Mtb H37Rv; the most 214 507
active compounds have dose-response and cytotoxicity data
TB efficacy data from the TB efficacy data from >300 published literature sources; data include PubMed citations, 6771
literature targets, cells and organisms tests, MIC, % inhibition, ECsq, 1Cs, etc.
TAACF-NIAID-CB2 Results of a commercial compound library screening by the Southern Research Institute to 102 634
inhibit the growth of Mycobacterium tuberculosis strain H37Rv
Novartis Mtb Aerobic and anaerobic hits versus M. tuberculosis 283

@ Abbreviations: ADMET, absorption, distribution, metabolism, excretion, and toxicity; MR4, Malaria Research and Reference Reagent Resource Center.
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A repositioning strategy using the CDD (http://www.collaborativedrug.com/register), ChemSpider (http://www.chemspider.com) or other databases (bioactivity data
for target or disease of interest and FDA drug data set) in combination with computational methods (pharmacophore, similarity assessment, machine learning, etc.).

models to find compounds of interest in the FDA-approved drugs
set. For instance, models generated with data from one or more
public data sets (or the user’s own private data) could be used to
search other data sets and find new molecules for screening (Fig. 3).

Other tools

The same strategy described previously could be readily taken with
other databases and software tools taking advantage of freely
available content and tools in databases such as ChemSpider
[38], PubChem [93], DrugBank [56] and ChEMBL (http://www.
ebi.ac.uk/chembldb/index.php) or others [16,94,95]. This overall
approach is analogous to the pharmacophore approach taken with
transporters searching the SCUT database of commonly used drugs
(Table 3), similarity searching for drugs cross-reactive with DOA
and TDM immunoassays [33-36] and with Mtb Bayesian models
[86,91] for searching the FDA-approved drugs. Recent efforts to
validate the Bayesian models with data from other laboratories
(described above) would indicate that the in silico approach cer-
tainly has merit for neglected diseases.

The missing piece

What is still needed is a single comprehensive resource that has
validated chemical structures (and properties) of both FDA- and
internationally approved drugs, as well as those that are either no
longer used or are removed from the market. A database contain-
ing information on studies in which these compounds show
activity (e.g. enzyme, receptor, whole cell data, etc. similar to

Tables 1 and 2) as well as clinical data would be invaluable. Such
a database could then be linked with other mining tools that
enable 1D-3D similarity searching. Once created it could be used
as the authoritative virtual screening database for repurposing
before testing physical compounds in whole cells or target assays.

Summary

Analysis of the literature suggests that, by using HTS, there are
many examples of FDA-approved drugs that are active against
additional targets that can be used to therapeutic advantage for
repositioning. For example, there are several examples for
neglected diseases, including compounds with antimalarial, anti-
tubercular, trypanosomal and Chagas disease activity (Table 2). To
date, there are fewer such examples where in silico approaches have
derived new uses for approved drugs (Table 2) [77,96]. However,
with current technologies and databases, as well as a close inte-
gration with in vitro screening, this will change. Although com-
putational approaches, such as ligand- and structure-based
methods, have been widely used for searching libraries of com-
mercial compounds for neglected diseases [97], few have tried to
use already existing drugs with computational methods [77]. A
recently described apparent gap has been noted in the Mtb com-
munity between the generation and utilization of computational
models for drug discovery [98]. These in silico models are not well
disseminated and certainly not widely used for repositioning FDA-
approved drugs. This situation needs to be rectified. Another
important consideration should be the quality of the structures
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in the databases used, whether of FDA drugs or other molecules, as
these will impact the in silico results [94]. If neglected diseases can
benefit from in silico methods so too can rare or orphan diseases as
well as more common diseases. Repositioning approved drugs
brings with it other incentives, such as seven-year market exclu-
sivity [98], whereas new approved drugs or vaccines for a neglected
disease can qualify for an FDA priority review voucher (US Medical
Device User Fee and Modernization Act). In our opinion, some or
all of the aforementioned in silico approaches should be used
alongside in vitro methods to drug repurposing, if for no other
reason than to speed up the process of drug discovery at little
additional cost.
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