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High-throughput compound screening is time and resource consuming, and considerable effort is

invested into screening compound libraries, profiling, and selecting the most promising candidates for

further testing. Active-learning methods assist the selection process by focusing on areas of chemical

space that have the greatest chance of success while considering structural novelty. The core feature of

these algorithms is their ability to adapt the structure–activity landscapes through feedback. Instead of

full-deck screening, only focused subsets of compounds are tested, and the experimental readout is used

to refine molecule selection for subsequent screening cycles. Once implemented, these techniques have

the potential to reduce costs and save precious materials. Here, we provide a comprehensive overview of

the various computational active-learning approaches and outline their potential for drug discovery.
Introduction
The concept of iterative molecular design, synthesis, and testing

forms a central pillar of drug discovery; it provides the basis for our

understanding of the underlying structure–activity relation (SAR).

Iterative synthesize-and-test cycles with SAR model adaptation to

newly obtained activity data improve the overall quality of the

designer compounds and help reduce experimentation costs. Sim-

ilarly, the screening of existing compounds profits from such

feedback-driven picking: within a fixed budget, adaptive screening

rounds through multiple acquisition-and-test cycles can lead to

significantly better solutions compared with a single large screen

[1,2]. The crucial step in each learning cycle is the formulation of a

well-motivated hypothesis for compound generation (de novo

design) or compound picking (when screening from a compound

pool) based on the available SAR data. The selected molecules can

either be hypothesized actives or readily available compounds that

will improve the model by elucidating poorly understood parts of

the SAR. Commonly, an interdisciplinary team of scientists gen-

erates the new hypothesis by inferring from their expertise and

medicinal chemistry ‘intuition’. Therefore, any design hypothe-

sis is easily biased towards preferred chemistry [3,4] or predis-

posed model interpretation [5,6]. Although expert knowledge is
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indisputably important for successfully guiding drug discovery

projects, an unbiased perspective during the compound selection

process can lead to structurally surprising chemical agents with

the desired novelty, bioactivity, and physicochemical properties

[7]. Moreover, with the recent advances of microfluidics-assisted

integrated medicinal chemistry platforms (e.g., lab-on-a-chip

systems [8]), the generation of an accurate and suitable molecular

design hypothesis and, consequently, the selection of new com-

pounds for synthesis and testing, becomes the bottleneck in an

otherwise automatable optimization process [9].

Computational models act as rapid and objective decision makers

in this decisive selection step (Fig. 1a) [10,11]. Active learning (also

known as ‘selective sampling’) is an umbrella term from the field of

machine learning for methods that select data points for testing and

feeding back into the model [12,13]. Approximately 15 years ago,

the term was introduced to drug discovery [14]. Recently, the topic

has gained momentum, driven by technological advancements in

small-scale organic synthesis systems and the accuracy of machine-

learning prediction models. Here, we provide a comprehensive

overview of investigations that have applied active-learning tech-

niques to drug discovery. We focus on methods for finding novel

chemical structures and discuss possible future directions of algo-

rithm development and how these might help solve current chal-

lenges in computer-assisted drug design.
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FIG. 1

(a) Schematic of the active-learning concept. Known activity data are

provided as training data to a machine-learning model that generalizes this

knowledge. A selection strategy is used that picks from a list of new

molecules with unknown activity. These selection strategies usually try to
identify molecules that would be particularly suited for improving the model

quality (explorative strategies) if they are included in the training database

with their activity value. Alternatively, molecules are selected that might have

favorable activity values (exploitive strategies). After the selected molecules
have been tested (‘labeled’), they are added to the training data to train an

improved machine-learning model. (b) Conceptual comparison of different

active-learning strategies. These can be distinguished methodologically
according to whether the selection strategy is derived from the whole model

(‘Model focused’) or by examining individual data points (‘Data focused’).

When compounds are selected with the whole model in mind, the strategies

are explorative. Possible implementations are predicting or calculating the
change in model architecture (‘Model change’) or the improvement of the

model (‘Model improvement’; e.g., variance reduction or error on the test set).

When examining individual data points, models can either be exploitive

(‘Active retrieval’) or use the error or uncertainty on the individual data points
to perform confined model optimization (‘Uncertainty sampling’).

BOX 1

Pseudocode for performing a retrospective active-
learning investigation (‘ActiveLearning’)

The function takes descriptions and activities of a set of molecules
(‘M’) and a selection function (‘s’) that is used for the picking of
molecules. First, the molecular data are split into three subsets in a
stratified manner according to activity. Afterwards, the training
data (‘T’) are used for initial model training (‘trainRFmodel’). The
active learning is performed for 100 iterations in which we first pick
a molecule from the learning data (‘L’) according to the selection
function. This selected molecule is then removed from the learning
data and added to the training data, with which the model is
retrained. The performance of the new model can then be
evaluated (‘evaluate’), for example according to the error on the
test data (‘E’, Fig. 2a, main text), the activity of the picked molecule
(Fig. 2b, main text), or the number of scaffolds known to the model
(Fig. 2c, main text). As examples of selection functions, we show
pseudocode for a random strategy (‘random’) that picks a random
molecule from the set, an exploitive strategy (‘exploitive’) that picks
the molecule with the highest predicted activity, and an
explorative strategy (‘explorative’) that picks the molecule with the
highest prediction uncertainty (e.g., the maximum variance
according to the individual activity predictions of the trees of the
random forest model).
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Exploration versus exploitation
Compound selection strategies can be distinguished according to

their underlying motivation (Fig. 1b): whereas some algorithms

utilize the available information to retrieve compounds with

certain properties (‘exploitation’), others seek to improve the

model by adding knowledge (‘exploration’). From a technical

point of view, exploration can either be performed from a mole-

cule-centric perspective (‘uncertainty sampling’, i.e., selecting

molecules that are predicted with low confidence by the model)

or by explicitly estimating the impact of adding the additional

data point on the error or architecture of the model (‘model-

centric’ approaches). Explorative strategies sample more diverse

chemical structures and rapidly increase the knowledge for the

model (Fig. 2a), while not always proposing favorable structures in

terms of their activity (Fig. 2b). Conversely, exploitive strategies

retrieve active compounds with a greater probability, but do not
necessarily add knowledge to the model. In fact, the model quality

can even decrease over time when using an exploitive strategy

because of the introduction of a strict bias towards highly active

compounds (Fig. 2a). Various strategies for either of the two

compound selection principles have been proposed and validated

in the context of drug discovery (Table 1).

Explorative approaches have proven particularly attractive

when aiming at novel chemotypes with desired bioactivities

(Fig. 2c). For example, to probe for the applicability of uncertainty

sampling to explorative drug design, Lemmen and coworkers

developed both a jury of Perceptrons and a support vector machine

(SVM) model to distinguish thrombin ligands from ‘inactives’

[14,15]. Model optimization was conducted by adding examples
www.drugdiscoverytoday.com 459
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FIG. 2

Comparison of the behavior of an explorative and an exploitive strategy (see also Box 1). A random forest regression model (scikit-learn-0.14.1) was built on affinity
data (IC50, Kd, and EC50) and Morgan fingerprints (radius = 4, 2048 bits) for human cyclin-dependent kinase 2 (CDK2) ligand data from ChEMBL (version 19, www.

ebi.ac.uk/chembl/) [61] containing 3780 structures. The data were split into three equal parts in a stratified manner according to activity. One part was used for

initial model training (‘training set’), one as a set from which the model was allowed to pick new structures (‘learning set’) and another for external validation to
monitor the development of the mean squared error (MSE) on unknown data (‘test set’). Active learning was performed for a total of 100 iterations for all applied

strategies. Initial model training and active learning was repeated 100 times for estimating the impact of the stochastic model creation [we show mean values and

standard deviations in (a–c)]. Maximum prediction was used as the exploitive strategy (shown in blue) and query-by-committee (i.e., maximum prediction

variance) as the explorative strategy (shown in orange). Random molecule picking (shown in gray) served as a baseline. The explorative strategy rapidly reduces
the error on the test set and converges towards the minimal possible error (black line, average error of 100 models trained on all training and learning data),

whereas the performance of the exploitive model fluctuates and is outperformed even by random selection (a). Conversely, the exploitive strategy successfully

retrieves highly active compounds, whereas the explorative strategy samples activity equivalent to random selection (b). This is also visible in the number of

scaffolds retrieved by the different strategies: whereas the exploitive strategy largely samples from the universe of known, active scaffolds, the explorative strategy
selects compounds with scaffolds that are not contained in the training data (c). For further analysis, activity landscapes (Lisard-1.2.6) were created using a

principle component analysis (PCA) of CATS2 descriptions of the same ChEMBL CDK2 data. Trajectories of selected molecules are visualized when the active-

learning strategies are initialized with only one randomly picked example (CHEMBL326275) as training data. Whereas both random selection (d) and the
explorative strategy (e) sample from larger areas of the landscape, the exploitive strategy (f) is focused on an activity island after it found the first highly active

compound.

460 www.drugdiscoverytoday.com

R
eview

s
�IN

F
O
R
M
A
T
IC
S

http://www.ebi.ac.uk/chembl/
http://www.ebi.ac.uk/chembl/


Drug Discovery Today � Volume 20, Number 4 �April 2015 REVIEWS

TABLE 1

Overview of retrospective and prospective investigations applying the active-learning concept in computational drug discoverya

Target Machine learning

model

Type of study Exploration Exploitation Descriptor Batch Refs

(year)

Thrombin (and CDK2) Jury of Perceptrons;

SVM

Retrospective Uncertainty

sampling

Maximum certainty Molecular shape

features

Naı̈ve [14,15]

(2003)

GPCRs QBag Retrospective
(+ one prospective

screen)

Uncertainty
sampling

None MDL key +
physicochemical

properties

Naı̈ve [16]
(2008)

Anticancer drug

screen (NCI60)

Gaussian process Retrospective Uncertainty

sampling

Variance corrected

predictions and

expected improvement

OpenBabel FP2 None [18,19]

(2008)

12 human targets Gaussian process Retrospective None Expected improvement MOE 2D descriptors None [20]

(2013)

Narcotic analgesics KGCB Retrospective None Expected improvement Free-Wilson model None [21]

(2011)

GPCR polypharmacology
and blood–brain barrier

penetration

Bayesian model Prospective Sampling by
genetic

algorithms

Maximum prediction ECFP6 Naı̈ve [32]
(2012)

Abl kinase Random forest Prospective Undersampled

building block

Maximum prediction ECFP6 +

physicochemical
properties

Naı̈ve [34]

(2013)

Gyrase QMOD Retrospective Binding mode

analysis

Maximum prediction N/A Naı̈ve [35]

(2012)

a The table reports the target activity that was learned in the study (‘Target’) and the used machine learning algorithm (‘Machine learning Model’) and molecular descriptor (‘Descriptor’).

Furthermore, it reports whether the investigation was of retrospective or prospective character (‘Type of study’) and the applied active-learning selection strategies (split into strategies for

‘Exploration’ and ‘Exploitation’). Finally, the ‘Batch’ column reports whether the algorithm was allowed to be informed about one selected compound immediately (None) or had to select a

set of a certain number of top scoring compounds before feedback for the whole set was given (Naı̈ve).
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with the strongest disagreement among the jury or the smallest

distance to the SVM model hyperplane. Both active-learning

methods performed better than passive versions, particularly

when the fraction of true positives was small. The authors were

also able to ‘invert’ their selection strategy and retrieve high-

confidence samples, thereby shifting the focus from model im-

provement to active retrieval. Fujiwara et al. applied uncertainty

sampling through disagreement among decision trees (‘query by

committee’, also known as ‘version space reduction’) in a random

forest-like virtual screening approach for different G protein-cou-

pled receptor (GPCR) ligands [16]. They analyzed individual runs

and demonstrated that the explorative strategy managed to ‘hop’

to different classes of actives according to structural clustering and

functional groups, in contrast to naı̈ve nearest neighbor methods.

For exploitation, even such model-free approaches have been

successfully applied in sequential screening campaigns [17]. For

example, adding the actives found in the previous runs as addi-

tional queries generally improved the overall hit retrieval rate in

subsequent screening rounds [1]. In one of the first machine-

learning model-based studies, De Grave et al. implemented a

Gaussian process model for cancer cell growth inhibition and

tested several active molecule-seeking strategies [18,19]. Exploita-

tion strategies retrieved more active molecules than did an explor-

ative control model. However, the observed differences between

most of the analyzed exploitation strategies were statistically

insignificant. Ahmadi et al. implemented an exploitation strategy

that used the expected improvement with a probabilistic notion of

the difference between the predicted activity value and its implicit

variance according to the underlying Gaussian process model
compared with the known best compound [20]. Similar to the

De Grave study, their method performed comparably to simpler

exploitation strategies for many of the test cases. Not unexpected-

ly, the smoothness of the SAR function [10] was a crucial feature

for success for the more elaborate selection strategies. This obser-

vation suggests that active-learning approaches benefit from ad-

vanced compound selection methods, but their actual impact

depends on the quality of the model and the data. In fact, classical

quantitative SAR (QSAR) can outperform exploitation approaches

with decreasing amounts of initially provided training data [20].

With little training data at hand, the machine-learning models

struggle to generalize and the retrieval of structural analogs

becomes a competitive option. Nevertheless, in cases where

high-quality models can be obtained, mechanistically elaborated

exploitive models retrieve desirable compounds within only a few

iterations. Negoescu et al. recently presented such a model [21].

Their method relies on an algorithmically sophisticated knowl-

edge-gradient approach for picking compounds that maximize the

expected improvement of narcotic activity.

Different selection functions operating on the same data set

result in strongly differing sets of selected compounds (Fig. 2d–f),

even when the strategies follow the same underlying motivation

[20]. This closely resembles the situation a computational drug

designer is faced with when triaging compound databases with

different molecular similarity definitions, which commonly leads

to different rankings and performances [22]. Transferring this

knowledge to active learning suggests that it is essential to select

the best-performing function for a given project according to

the acquired experience with different selection functions, for
www.drugdiscoverytoday.com 461
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example through retrospective evaluation (Box 1). Another lesson

learned from similarity searching is that a consensus combination

of different perspectives might improve the general applicability

and robustness of a method [23]. For example, Baram et al. sug-

gested an evolving stochastic combination of compound selection

functions [24]. They ran a total of 14 retrospective analyses and

concluded that their adaptive consensus approach performs at

least as good as the best individual model in ten out of these cases.

In their study, inferior performance correlated with poor learning-

data availability, which did not give the model enough room to

adapt the contributions of the individual models. Nevertheless,

this outcome suggests that a consensus function outperforms

individual selection mechanisms and the best combination of

functions can be learned during the first active-learning iterations.

Evidently, the decision to change between exploration and ex-

ploitation strategies can be automated. This tactic will trigger

explorative behavior when the model needs to be extended, while

otherwise retrieving highly desirable compounds. Donmez et al.

proposed a system that changes from exploration to exploitation

as soon as a certain model quality is achieved [25]. Automated

switching between search methods might help avoid following a

‘wrong’ selection strategy in active learning and increase its prac-

tical applicability.

Seeking novelty in chemical space
Finding structurally novel molecules with designer activity

remains the chief aim of drug discovery [26]. The goal is not only

to identify new chemical entities per se, but also to obtain struc-

tures with altered physicochemical and polypharmacological

properties compared with the known bioactive agents. Explorative

selection is not the only viable strategy, and several other possi-

bilities for ensuring novelty in the selected compounds have been

investigated.

Instead of selecting compounds from the whole compound

pool, molecules can be presampled without the necessity for full-

library enumeration. For example, when reaction products can be

represented by their educt combination, genetic algorithms (GAs)

and other adaptive sampling methods have proven useful for

proposing novel molecules [1,27], including thrombin [28,29]

and matrix metalloproteinase-12 (MMP-12) inhibitors [9], as well

as bioactive peptides [6,30,31]. These stochastic techniques

achieve explorative behavior through high ‘mutation rates’ or

structurally diverse parents. However, they do not represent

active-learning methods per se because they randomly explore

compounds that are similar to the parent molecules in a model-

free fashion and, consequently, do not include an adaptive SAR

model. Nevertheless, GAs can be used in fusion approaches to

ensure sample diversity, which can benefit the active-learning

algorithm. Besnard et al. followed such a strategy using a Bayesian

activity model that they provided with molecules that evolved via

chemical transformations from partially ‘random’ parents [32].

Additionally, GAs have also been proven effective for noncombi-

natorial molecular representations, such as substructure or phar-

macophoric fingerprints that generate descriptors that do not

necessarily correspond to real molecules, and select their nearest

neighbors [33]. In an orthogonal study, Desai et al. demonstrated

that a descriptor-based random forest active-learning model was

able to steer successfully combinatorial synthesis for Abl kinase
462 www.drugdiscoverytoday.com
inhibition, without explicitly modeling the combinatorial char-

acter of the compounds [34].

As an alternative to relying on the degree of exploration of the

selection function or using presampling, researchers have also

forced novelty into the selected molecules post hoc. This can be

accomplished by filtering certain substructures [32] or focusing on

underinvestigated building blocks [34]. Varela et al. followed a

more elaborate approach by statistically quantifying the novelty of

compounds according to their predicted receptor-binding pose

[35]. Compounds were tested in parallel to inform the model about

the activity of unknown structures. The authors reported that this

additional testing, which obviously sampled also weakly active

molecules, enabled the implemented exploitation strategy to sam-

ple structurally more diverse molecules compared with the ex-

ploitive control model.

Future developments of active learning in drug
discovery
The active-learning concept has successfully been transferred from

the field of computer science to drug discovery and several exten-

sions have been proposed to improve the practical applicability of

the method [12]. In the context of drug discovery, three of these

theoretical considerations appear to be most promising, namely

re-labeling, cost-aware learning, and batch selection.

First, readouts from biological assays are often associated with

high noise levels, particularly, when data from different assays are

aggregated [36]. Active-learning approaches have emerged that

can challenge the annotation of known compounds by requesting

retesting. Therefore, the active-learning model can aid training

data curation and rescue false negatives [9].

Second, the theoretically studied concept of cost-aware learning

might make active-learning algorithms more economical [37] be-

cause compounds that are difficult to synthesize, precious, expensive,

or difficult to handle might be poor choices for model refinement.

Third, most biological assays are performed in batches of com-

pounds that are tested simultaneously. All of the reported studies

concerning active learning have investigated selection functions

that select one compound at a time or utilize naı̈ve selections of

the top-ranked compounds according to the scoring function.

Specifically for large batch numbers, this strategy has been empiri-

cally demonstrated to decrease model convergence, because the

added knowledge can be redundant [16]. Given that the evalua-

tion of every possible subset is not feasible for combinatorial

reasons, heuristic strategies have been proposed to find a group

of instances with little overlap in additional knowledge [38].

For complex objective functions, semisupervised learning has

proven useful [39,40] and could aid batch selection. This closely

related machine-learning concept also selects compounds for

model refinement, but simply assumes the predicted affinities

to be true. The model is then retrained with both measured and

predicted activities. This type of feedback does not provide the

model with more knowledge about the activities, but about the

data distribution to determine more appropriate class boundaries

when the data distribution is meaningful for the given classifica-

tion problem and certain smoothness criteria can be met [41]. A

semisupervised approach might aid in subsequently selecting

near-optimal solutions and avoid redundancy by adding assumed

values for the selections before additional testing.
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A current hot topic in drug design is the identification of

compounds that have a desired polypharmacological profile

[42]. In contrast to identifying ligands that modulate one specific

target activity, known as the ‘magic bullet’ concept [43], poly-

pharmacological strategies have been suggested to treat complex

diseases, such as cancer [44], identifying antipathogenics that have

low susceptibility to developing resistance [45], as well as avoiding

off-target liabilities [46]. These approaches are frequently referred

to as ‘magic shotgun’ or ‘master key compounds’ to emphasize the

often promiscuous character of compounds [47]. For computa-

tional polypharmacological investigations, several individual ac-

tivity models are combined for target profile prediction. This adds

another level of complexity to the active-learning concept because

compound selection becomes a multidimensional optimization
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combining Gaussian mixtures was recently suggested [48,49]. Both

approaches led to the discovery of novel compounds that had the

desired physicochemical properties and polypharmacology pro-

files against a selected set of GPCRs. Intriguingly, recent investiga-
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explicitly for the multidimensionality of the objective space in

the developed algorithms, for example by Pareto ranking [50].
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rding to prominence and potency as reported in the respective publications.
ive structures from the training set in the investigated area of chemical space

olecules are unlikely to have been picked using naive similarity-based

s) Tanimoto similarity (Tc; with Tc = 1 meaning identical fingerprints) to their

gy is aimed at finding novel structures (e.g., 5 [34] and 6 [16]) that are
for 5 against Abl kinase inhibitors, and maximal Tc = 0.14 for 6 against a set of

BRA collection [62]). Abbreviation: GPCR, G protein-coupled receptor.
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strives to identify the set of Pareto-optimal solutions [51]. Using

such approaches, compound selection can be steered to efficiently

navigate the multidimensional objective space and assist in ma-

turing these approaches to support polypharmacological studies.

Concluding remarks
Active learning represents a feasible and broadly applicable con-

cept for drug discovery. Here, we have identified promising exten-

sions for the active-learning concept, which are currently

underinvestigated in practical applications. For example, batch

selection is notoriously unvetted, particularly for exploitive com-

pound prioritization [18]. Comparative studies have frequently

demonstrated that simple strategies, such as nearest neighbor

searching, perform well in the first iterations by retrieving closely

related derivatives, but when additional new chemotypes need to
464 www.drugdiscoverytoday.com
be retrieved, more advanced selection methods should be pursued

[14,16] (Fig. 3). Therefore, model-centric perspectives and the

inclusion of cost estimates might increase scaffold diversity

among the retrieved hits while actively reducing overheads.

Active learning can profit from the experience gained in related

fields, such as focused library design [52], diversity analysis [53],

and de novo design [54]. Simultaneously, knowledge about elabo-

rate active-learning strategies could be transferred from successful

applications in drug formulation [55], protein–protein interac-

tions [56], drug combinations [57], gene expression data for

cancer diagnosis [58], cancer rescue mutations [59], and experi-

ment scheduling [60]. With further algorithmic advances, this

technology will soon enable automated innovative hit identifi-

cation and support chemical decision making in rational drug

design.
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