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Point of view of the current state of the activity cliff phenomenon focusing
on the rationale, effects and potential solutions to handle the influence of

activity cliffs in drug discovery.
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The impact activity cliffs have on drug discovery is double-edged. For

instance, whereas medicinal chemists can take advantage of regions in

chemical space rich in activity cliffs, QSAR practitioners need to escape

from such regions. The influence of activity cliffs in medicinal chemistry

applications is extensively documented. However, the ‘dark side’ of

activity cliffs (i.e. their detrimental effect on the development of

predictive machine learning algorithms) has been understudied. Similarly,

limited amounts of work have been devoted to propose potential solutions

to the drawbacks of activity cliffs in similarity-based approaches. In this

review, the duality of activity cliffs in medicinal chemistry and

computational approaches is addressed, with emphasis on the rationale

and potential solutions for handling the ‘ugly face’ of activity cliffs.

Introduction
Activity cliffs or, more generally, property cliffs are pairs of compounds with high structural

similarity but unexpectedly high activity (or property) difference [1]. For medicinal chemists the

existence and applications of activity cliffs is obvious [2–4]. Every experienced medicinal chemist

is aware of pairs of molecules with high structural similarity but very different activity [5,6].

However, efforts to measure and detect activity cliffs systematically in screening datasets using

computational methods have raised the question as to whether activity cliffs exist or if they are

just artifacts of the computational methods employed [7,8].
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postdoctoral fellow. José was named Assistant Member at

the Torrey Pines Institute for Molecular Studies in Florida

in August 2007 and was named Full Research Professor at

UNAM in October 2012. In June 2013 he joined the Mayo

Clinic. His research is focused on drug discovery. He is also

interested in developing and applying chemoinformatic

methods for the systematic analysis of structure–activity

relationships and the classification and data mining of

compound libraries.

Fernanda Borges is Associate

Professor of the Department of

Chemistry and Biochemistry,

Faculty of Sciences, University

of Porto, and Senior Researcher

of CIQUP. She received her

MSc and PhD (pharmaceutical

chemistry) in pharmaceutical

sciences from the Faculty of

Pharmacy, University of Porto,

Portugal. Her current research is focused on medicinal

chemistry, namely in the design and development of drugs

to be used in the prevention and/or therapy of neuro-

degenerative diseases. She has authored more than 170

publications in peer reviewed journals, eight international
book chapters and three patents.

Corresponding author:. Cruz-Monteagudo, M. (gmailkelcm@yahoo.es), (maikelcm@uclv.edu.cu)

1359-6446/06/$ - see front matter � 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.drudis.2014.02.003 www.drugdiscoverytoday.com 1069

mailto:gmailkelcm@yahoo.es
mailto:maikelcm@uclv.edu.cu
http://dx.doi.org/10.1016/j.drudis.2014.02.003


R
eview

s
�K

E
Y
N
O
T
E
R
E
V
IE
W

REVIEWS Drug Discovery Today � Volume 19, Number 8 �August 2014
Although there are numerous publications focused on defining

or applying the concept of activity cliffs [6], the detrimental effects

of activity cliffs on the application of QSAR and similarity-based

approaches have been disproportionally understudied. The posi-

tive and negative effects of activity cliffs in drug discovery are well

known – a ‘duality’ that deserves a closer look. In this review, we

discuss such duality in medicinal chemistry and computational

applications. We propose strategies to overcome the limitations

and issues associated with activity cliffs in QSAR and similarity-

based approaches. This paper exposes the authors’ shared opinion

on activity cliffs but it is not intended to provide definitive right or

wrong answers. Instead, we aim to present a snapshot of the

current state of the controversial duality of activity cliffs discuss-

ing, in an integrated manner, the perspectives of experts in the

field of activity landscape modeling.

Activity landscapes and activity cliffs
Most of the widely accepted activity cliff definitions rely on the

activity landscape concept. Activity landscapes and activity cliffs

are rich in information for SAR studies [9–16]. An activity land-

scape represents a hypersurface in a biologically relevant chemical

space resembling geographical maps where compound potency is

added as a third dimension to a 2D projection of the chemical

space [13]. In activity landscapes, smooth regions are associated

with continuous SAR and represent areas where gradual changes in

chemical structure induce moderate changes in biological activity.

By contrast, rugged regions are associated with discontinuous SAR

where small chemical modifications drastically change the biolo-

gical response [11]. The extreme forms of SAR discontinuity are

termed activity cliffs, which are formed by pairs of structurally

similar compounds with large differences in potency [5,17].

Whereas discontinuous SAR and activity cliffs provide the basis

for lead optimization [5,18], continuous and smooth SAR regions

are prerequisites for the successful application of QSAR and simi-

larity-based methods for scaffold hopping or simply as predictive

tools [11,19]. These quantitative approaches rely on the similarity

property principle (SPP) [20], which states that similar molecules

should have similar activity, thus assuming the presence of con-

tinuous SAR. By contrast, in rugged and discontinuous SAR

regions, the application of similarity-based methods is meaning-

less.

Several numerical analysis functions including the SAR index

(SARI) [21] or the structure–activity landscape index (SALI) [22]

have been introduced to quantify SAR discontinuity and to iden-

tify activity cliffs. These functions are useful for directly comparing

compound and activity similarities [19]. The SALI approach is

particularly suitable to detect activity cliffs in a dataset. However,

the magnitude of the activity cliffs is not determined by the SALI

metric because its values are compared on a relative scale. Con-

sequently, a disadvantage of this approach is that cliffs detected at

a certain cutoff might be irrelevant (shallow or pseudo cliffs) [5].

Subsequently, Stumpfe and Bajorath [5] highlighted the need for

using discrete criteria to define activity cliffs including the applied

similarity criterion, the potency measure and the magnitude of the

potency difference. These experts recommend considering a pair

of compounds as an activity cliff only if: (i) a pre-established

similarity criterion is satisfied; (ii) one compound in the pair

has potency in the nanomolar range; and (iii) there is at least a
1070 www.drugdiscoverytoday.com
100-fold difference in potency between the two compounds. Yet,

these criteria can be modified depending on the goals of the study.

Even so, discrete definitions of activity cliffs have limitations.

The type (i.e. IC50 or Ki) and quality of experimental measure-

ments [23], the molecular representations chosen and the simi-

larity metrics [24] can significantly influence the assessment of

activity cliffs [14]. Thus, activity cliffs identified in a given che-

mical and biological space might not be conserved in a different

reference space [25].

Medicinal chemists sometimes question activity cliffs defined

using similarity approaches because of their limited chemical

interpretability [5,14]. To address this issue, Bajorath and collea-

gues [26] have used the matched molecular pair (MMP) formalism

[27]. A MMP is defined as a pair of compounds that only differ at a

single site (represented by a substructure) such as a ring or an R

group. Thus, to classify a molecule pair as an MMP-cliff the

potency difference required remains essentially the same as that

applied in similarity-based definitions. Instead, the difference in

size of the exchanged fragments and their size is restricted to a

predefined maximum number of non-hydrogen atoms that guar-

antee the level of structural similarity expected for an activity cliff

[26]. Note that the MMP-cliff definition is not free from using

predefined thresholds. Activity cliffs have also been defined on the

basis of consistently defined scaffolds and the presence of different

scaffold–R-group relationships [3,28,29]; or by calculating the 3D

similarity between compound binding modes observed in the X-

ray structure of ligand–target complexes [4,30]. An updated review

of the existing activity cliff definitions can be found in [6,31], and

references therein.

Activity cliffs: facts or artifacts?
As mentioned above, it has been argued that activity cliffs could be

artifacts as a result of a structural description that is not relevant to

the specific dataset in the context of the biological problem [7]. An

illustrative description of this point of view is offered by Horvath

in a rich article that familiarizes experimental chemists with QSAR

[8]. Horvath mentions that two molecules codified by a set of

descriptors that fail to account for the actual difference between

them will be close in the structure space but will display a specta-

cular and unexplained difference of activity, artificially generating

an activity cliff [8]. Therefore, it is not straightforward to differ-

entiate this situation from the presence of ‘true’ activity cliffs.

After all, even for the ‘genuine’ cases, activity cliffs can appear

simply as a result of pharmacokinetic differences or even measure-

ment or annotation errors [7].

Because activity cliffs might be produced by the selection of

inadequate descriptors, it is tempting to try to remove activity

cliffs from a dataset by searching for appropriate descriptors that

smooth out the activity landscape. However, identifying appro-

priate descriptors is not straightforward because this approach

involves effective feature selection or mapping methods, and/or

the selection of adequate evaluation criteria.

Addressing activity cliffs with chemoinformatics
Finding the ‘appropriate’ descriptors to smooth an activity land-

scape is a dataset-dependent problem. Therefore, the search for a

universal molecular representation is not a realistic expectation

[32]. A potential solution to find suitable descriptors for a given
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dataset could be the integration of feature-selection methods

commonly used in chemoinformatics with numerical analysis

functions to quantify SAR discontinuity such as SARI [21] or SALI

[22]. So, the relevant descriptor subset is searched by trying to

minimize and maximize the discontinuity and continuity of the

SAR present in the training set.

The rationale behind the use of numerical analysis functions to

quantify SAR discontinuity as objective functions for feature selec-

tion relies on taking advantage of two well-known facts in simi-

larity analysis: (i) the representation dependence of activity

landscapes; and (ii) the distinct characteristic of scalar descriptors

commonly used in QSAR modeling to account for ligand–target

interactions indirectly. In this way, the search is directed toward

finding structural features rendering continuous SAR spaces. Pro-

spective applications of QSAR and similarity-based analyses

applied over such a continuous reference space should be more

meaningful and predictive than those based on heterogeneous

reference spaces.

The milestone work of Guha and Van Drie, directed to assess

how well a modeling protocol captures a structure–activity land-

scape by means of SALI curves [19], is a documented example of

the potential offered by numerical analysis functions as evaluation

criteria to quantify SAR discontinuity. Unlike previous retrospec-

tive applications of the SALI approach, in this work it is demon-

strated that these SALI curves can be prospectively applied to

measure quantitatively the capability of a given model to capture

the activity cliffs that are inherent in SAR.

Concerning mapping algorithms, one solution could be the use

of different strategies to include information of activity cliffs in k

nearest neighbor (k-NN) models to identify the k nearest neighbors

reflecting the applicability domain (AD) of a prediction. In this

case, the well-known limitations associated with the AD definition

need to be considered [33,34]. Alternatively, we can split the

training dataset into structural clusters to build more-reliable local

or multidomain models, controlling the risks associated with the

use of such models [35]. Finally, an alternative solution to search

for the ‘best’ set of descriptors is to develop improved molecular

representations capable of encoding relevant information and the

ability of generating static or dynamic robust descriptor spaces.

That is, once a robust descriptor space has been found for a given

dataset it can be regarded as dynamic if proven to be robust enough

to explain the SAR of a new dataset augmented with new screening

data. Otherwise, the descriptor space found is robust but static. The

introduction of in silico design and data analysis (ISIDA) property-

labeled fragment descriptors is a good example pointing in this

direction [36].

Global versus local molecular similarity
The sometimes divergent opinions of medicinal chemists and

chemoinformaticians on the utility of activity cliffs (i.e. whether

activity cliffs are desirable or undesirable features in datasets) are

rooted on the application of different concepts of molecular

similarity and the respective molecular similarity methods

required for each task. Chemoinformaticians and, more specifi-

cally, practitioners of QSAR and pharmacophore-based methods

are used to working with ‘local’ similarities, commonly expressed

as scalar molecular descriptors that encode, for example, topolo-

gical, constitutional or functional aspects of the molecular
structure. By contrast, medicinal chemists are used to envision

molecular similarity using ‘global’ or ‘holistic’ molecular repre-

sentations, which are frequently encoded using fingerprints such

as the MACCS keys [37] or the extended connectivity fingerprints

[38]. Probably, this is also the reason why medicinal chemists

easily accept the existence of activity cliffs, whereas not every

chemoinformatician does. This rationale has been discussed in the

recent paper of Stumpfe and Bajorath [39], which essentially states

that every holistic similarity method must recognize two closely

related analogs as being ‘similar’, even if one is active and the other

one is not, owing to the violation of crucial receptor–ligand

contact(s). This means that methods conceptually based on the

SPP are truly ligand-centric and do not take interaction criteria

into account. Although local and global views of similarity are

employed in contemporary similarity searching, holistic molecu-

lar representations are the most frequently used so far. The most

important reason is the scaffold hopping potential [40] of holistic

similarity searching, which falls exactly into the applicability

domain of the SPP.

Addressing molecular representation dependence
It is well-accepted that molecular representation is the most

important parameter for defining activity cliffs [25,31]. As dis-

cussed above, one approach to address such dependence is using

MMPs or discrete R-group substitutions around a core scaffold.

Another approach proposed by Medina-Franco and colleagues

[25,41–43] is using multiple representations [44] to derive a con-

sensus activity landscape model [25]. Using this strategy, the SALI

approach [22] was extended to compute consensus SALI values

obtained over multiple, diverse and orthogonal 2D and 3D repre-

sentations. This approach led to the identification of molecule

pairs concurrently classified as activity cliffs by multiple represen-

tations encoding determinant topological, conformational and

pharmacophore-based information. A similar data fusion strategy

combining multiple 2D and 3D representations can be extended to

other activity landscape methods such as the SARI approach

proposed by Peltason and Bajorath [21] to derive a consensus

SAR index.

Activity cliffs in medicinal chemistry
As elaborated above, in medicinal chemistry the activity cliff

concept can be conveniently used in lead optimization where it

is highly relevant for identifying small structural modifications

associated with significant potency changes. A study devoted to

capture SAR progression by comparing activity-cliff-dependent

and -independent pathways [45] evidences the potential of

exploiting the activity cliff concept in lead optimization projects.

The study showed that most potent compounds were identified

through activity-cliff-dependent pathways in comparison to cliff-

independent ones. Specifically, pathways originating from 54% of

all activity cliffs included the most potent dataset compounds,

whereas pathways originating from only 28% of compounds not

involved in activity cliffs successfully detected potent compounds,

supporting the advantages of exploiting activity cliff information.

Additionally, the concept can be implemented on different

types of molecular similarity-based computational analyses

because it relies on just two types of similarity relationships

(structural and potency similarities) that can be easily quantified.
www.drugdiscoverytoday.com 1071
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However, in specific computational applications that rely on

continuous SARs, activity cliffs impose a limitation because they

represent exceptions to the SPP.

Specific applications and reviews of activity cliffs in SAR char-

acterization and lead optimization have been extensively presented

and discussed elsewhere. Table 1 summarizes representative and

practical applications of the activity cliff concept. Although the list

of examples is not exhaustive, Table 1 illustrates the evolution and

the current state of investigations focused on the development and

application of the activity cliff concept in medicinal chemistry and

drug discovery.

Activity cliffs or instances that should be misclassified
Despite the fact that there is a large number of molecular descrip-

tors available and the machine learning techniques for developing

QSAR models are growing, their predictive capability is still lim-

ited. Significant mis-predictions of activity still arise among similar

molecules even in cases where the overall predictivity is high. This

observation made by Maggiora in 2006 [9] still holds and probably

will in the near future. Maggiora points out in his editorial [9] that

the reason why QSAR often disappoints is related to the nature of

the underlying SAR. That is, the main assumption of QSAR and

similarity-based approaches is SAR continuity, where the struc-

ture–activity landscape looks like gently rolling hills. Therefore,

gradual changes in structure should necessarily lead to gradual

changes in activity. However, systematic quantitative profiling of

many different sets of active compounds has shown that the

majority of global SARs are heterogeneous [21], that is: their

activity landscapes contain gently sloped regions but also sharp

and shallow cliffs.

Activity cliffs, machine learning and chemoinformatics
SAR continuity provides the fundamental basis for QSAR analyses.

By contrast, SAR discontinuity has a direct detrimental effect on

the prediction ability of QSAR models [9]. Although statistical

learning methods played a protagonist role in QSAR development,

at present machine learning algorithms are the most extended

tools in chemoinformatics applications [46–48]. Similar to QSAR

and similarity-based approaches, machine learning methods also

rely on continuous SAR. The two general purposes for which

machine learning is used in chemoinformatics are classification

and data generalization. Here, machine learning is used to extract

regularity from data (that is: the process to get a view of trends and

patterns). In drug discovery, machine learning algorithms use SAR

knowledge to generate classifications and generalizations that are

conceptually meaningful [49]. In this context, activity cliffs repre-

sent exceptions or contradictions to the assumed continuous SAR

of the dataset.

So, if the classification mechanism in machine learning is

understood as a function that maps a description of an example

(chemical structure encoded by molecular descriptors) to its label

(i.e. a continuous value or a class membership) the negative effect

of activity cliffs is clear. Most machine learning techniques just

capture major trends (‘rolling hills’) and fail to recognize activity

cliffs reducing the reliability of prospective predictions. Even for

advanced techniques capable of handling nonlinear relationships

such as neural networks or support vector machines (SVMs), it is

difficult to identify activity cliffs. But even if the machine learning
1072 www.drugdiscoverytoday.com
model succeeds in capturing most of the relevant activity cliffs it

comes at a cost. A model that learns from a training dataset

including a significant number of activity cliffs is prone to over-

fitting [50]. Finally, although it is highly desirable to strive for a

machine learning model efficiently accounting for such variabil-

ity, it is important to be aware that it is unrealistic to find such a

learning algorithm. The current chemical and biological knowl-

edge is still immature and on the basis of such incomplete infor-

mation one cannot expect a perfect model. Thus, a better question

could be how to deal with chemoinformatics data and the lack of

generalization ability of prediction models trained on this type of

data. This issue raises the question – how to develop predictive

models with heterogeneous SARs.

Activity cliffs, outliers, noise and instances that should be
misclassified
Finding a parallelism for the activity cliff phenomenon in the

machine learning area and establishing a rationale for the negative

effect of activity cliffs over the predictive capabilities of machine

learning models is not a trivial task. However, Smith and Martinez

introduced preprocessing instances that should be misclassified

(PRISM), a novel filtering method that identifies ‘instances that

should be misclassified’ (ISMs) using heuristics that predict how

likely is that an instance will be misclassified (Box 1) [51]. ISM, the

basic concept behind PRISM, seems to be the closest analog of the

activity cliff concept in the machine learning arena. An instance is

recognized as an ISM if, restricted to the information provided in

the training data, the label assigned by the learning algorithm to

that instance is more likely to be correct, even if its actual label is

different. Unlike traditional outliers and class noise, ISMs exhibit a

high degree of class overlap. That is: an ISM is close in the task

space to other instances of different class.

Although ISMs have been defined in a classification context, a

good analogy can be established between ISMs and activity cliffs.

In machine learning, ISMs are similar instances with different

labels in a region of the task space; in activity landscape modeling,

activity cliffs represent molecules close in the chemical space with

a large difference in activity. However, this analogy becomes

almost perfect if, as proposed by Bajorath and colleagues [52],

the activity cliff concept is extended to include inactive com-

pounds, reinterpreting the activity landscape as an active or

inactive classification task. In this context, activity cliffs can be

understood as special cases of ISMs. The main difference relies on

the explicit consideration of the degree of similarity between

instances. In addition to class overlapping, a high degree of

similarity is required to label a pair of instances with opposite

classes as an activity cliff.

It is important to note that the rationale behind the PRISM

algorithm is different from that of traditional QSAR where outliers

are frequently removed after the models have been built. In PRISM,

ISMs are identified and removed from the training set before any

modeling effort. Outlier detection methods aim at finding anoma-

lies in the data, whereas noise reduction methods attempt to

identify and remove mislabeled instances. However, noise and

outlier detection and removal are difficult because there is no

universal definition of what an outlier actually is or if an instance is

noisy or not. So, ISMs have to be differentiated from outliers and

noise by resorting to their basic features as considered by the
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TABLE 1

Leading publications reporting activity cliffs aimed at medicinal chemistry tasks.

Publication title Pub.

year

Pub.

typea
Activity-cliff-related medicinal chemistry task Approach Refs

Structure–activity landscape

index: identifying and

quantifying activity cliffs

2008 M Identification and quantification of activity cliffs. Numerical quantification of activity cliffs in

terms of the structure–activity landscape

index (SALI).

[22]

Characterization of activity

landscapes using 2D and

3D similarity methods:

consensus activity cliffs

2009 M Activity landscape characterization. Addressing

the representation dependence of activity cliffs.

Definition of consensus activity cliffs by

means of a consensus model of the activity

landscape based on multiple 2D and 3D

representations.

[25]

From structure–activity to
structure–selectivity

relationships: quantitative

assessment, selectivity
cliffs, and key compounds

2009 M Structure–selectivity relationship (SSR)
characterization.

Compound similarity and selectivity data are
analyzed with the aid of network-like

similarity graphs (NSGs).

[70]

Structural interpretation of

activity cliffs revealed by

systematic analysis of

structure–activity
relationships in analog

series

2009 A Structural interpretation of activity cliffs. Different compound series are analyzed in

combinatorial analog graphs to determine

substitution patterns that introduce activity

cliffs of varying magnitude.

[71]

Molecular scaffolds with high

propensity to form
multi-target activity cliffs

2010 A Identification of molecular scaffolds with high

propensity to form multitarget activity cliffs.
Identification of potentially promiscuous

candidate scaffolds during compound

optimization efforts.

Exhaustive analysis of scaffolds and

associated compound activity data in the
ChemblDB and BindingDB databases.

[72]

Chemical substitutions that
introduce activity cliffs

across different compound

classes and biological

targets

2010 A Identification of defined chemical changes with
high propensity to introduce activity cliffs.

Application of the concept of matched
molecular pairs to analyze systematically the

ability of defined chemical changes to

introduce activity cliffs.

[73]

Computational analysis of

activity and selectivity cliffs

2011 M Identification of local structure–activity

relationships (SAR) and SSR environments.

Identification of key compounds involved in the

formation of activity and/or selectivity cliffs
displaying structural features responsible of

molecular selectivity.

Integrative computational approach

combining a numerical scoring scheme and

graphical visualization of molecular networks

for the systematic analysis of SARs and SSRs
of small molecules.

[17]

Design of multitarget activity

landscapes that capture
hierarchical activity cliff

distributions

2011 M Identification of single-, dual- and triple-target

activity cliffs. Selection of compounds forming
complex activity cliffs.

First activity landscape design integrating

compound potency relationships across
multiple targets in a formally consistent

manner.

[74]

From activity cliffs to activity

ridges: informative data
structures for SAR analysis

2011 M Extension of the activity cliff concept by

introducing the concept of ‘activity ridges’ (two
subsets of highly and weakly potent structurally

analogous compounds that form all possible

pairwise activity cliffs between them).

Identification of compound subsets having high
priority for SAR analysis.

Systematic analysis of 242 compound

datasets by means of an information-
theoretic approach devised to characterize

the structural composition of activity ridges.

[75]

Comprehensive analysis of

single- and multi-target

activity cliffs formed by
currently available bioactive

compounds

2011 A First systematic survey of single- and multi-target

activity cliffs contained in currently available

bioactive compounds. Identification of
compounds providing a rich source of SAR

information across many different target families.

The three major public domain compound

repositories were analyzed – PubChem

(http://pubchem.ncbi.nlm.nih.gov), Binding
DB [76] and ChEMBL [77].

[78]

Multitarget structure–activity

relationships characterized
by activity-difference maps

and consensus similarity

measure

2011 M Identification of multitarget activity cliffs.

Multitarget scaffold hopping.

Dual and triple activity-difference (DAD/TAD)

maps are employed for the systematic
characterization of the SAR of a benchmark

set of 299 compounds screened against

dopamine, norepinephrine and serotonin

transporters. Consensus activity cliffs and
scaffold hops were quantified and

represented using the mean SALI and

consensus structure–activity similarity (SAS)

maps.

[43]
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TABLE 1 (Continued )

Publication title Pub.

year

Pub.

typea
Activity-cliff-related medicinal chemistry task Approach Refs

From activity cliffs to
target-specific scoring

models and

pharmacophore
hypotheses

2011 M Identification of structure-based activity cliffs.
Supporting for the elucidation of key interacting

atoms of the binding site. Development of

pharmacophore hypotheses.

A new approach for the identification of
structure-based activity cliffs (ISAC) by

analyzing interaction energies of protein–

ligand complexes.

[79]

Exploration of 3D activity cliffs

on the basis of compound

binding modes and

comparison of 2D and
3D cliffs

2012 M Exploration of 3D activity cliffs derived from

comparisons of experimentally determined

compound binding modes and comparison with

2D activity cliffs to aid in SAR analysis and
mapping of crucial binding determinants in

cases where sufficient structural information is

available.

Crystallographic binding modes of beta-

secretase 1 (BACE1) and factor Xa (FXa)

inhibitors were systematically compared

using a 3D similarity method taking
conformational, positional and atomic

property differences into account.

[30]

Searching for coordinated
activity cliffs using particle

swarm optimization

2012 M Identification of ‘coordinated activity cliffs’
(compounds within groups of structural

neighbors that form multiple cliffs with different

partners, giving rise to local networks of cliffs in a

dataset; representing centers of high SAR
discontinuity and information content).

A systematic search of coordinated activity
cliffs in different compound sets was

conducted by using particle swarm

optimization.

[65]

MMP-Cliffs: systematic

identification of activity

cliffs on the basis of
matched molecular pairs

2012 M Identification of chemically intuitive activity cliffs

by considering well-defined substructure

replacements instead of calculated similarity
values.

Activity cliffs are defined on the basis of the

matched molecular pair (MMP) formalism

(MMP-cliffs). MMPs were systematically
derived from public domain compounds, and

MMP-cliffs were extracted from them.

[26]

Systematic identification

and classification of
three-dimensional

activity cliffs

2012 A Categorization of 3D activity cliffs (3D-cliffs) into

different categories on the basis of
crystallographic interaction patterns.

Rationalization of activity cliffs at the level of

ligand–target interactions.

Activity cliffs were systematically extracted

from public domain X-ray structures of
targets for which complexes with multiple

ligands were available, following the concept

of 3D-cliffs. Binding modes of ligands with

well-defined potency measurements were
compared in a pairwise manner, and their 3D

similarity was calculated using a previously

reported property density function-based
method taking conformational, positional

and chemical differences into account.

[4]

Extending the activity cliff

concept: structural

categorization of activity
cliffs and systematic i

dentification of different

types of cliffs in the ChEMBL
database

2012 A Structural categorization of activity cliffs and

systematic identification of different types of

cliffs.

Assignment of activity cliffs on the basis of

well-defined structural criteria.

[3]

Frequency of occurrence and

potency range distribution

of activity cliffs in bioactive

compounds

2012 A Analysis of the frequency of occurrence and

potency range distribution of activity cliffs in

bioactive compounds. General definition of

activity cliffs for data mining.

Cliff formation was studied across the global

potency range observed for qualifying

bioactive compounds.

[80]

Prediction of activity cliffs

using support vector

machines

2012 M Prediction of activity cliffs. Activity cliffs are predicted by support vector

machine (SVM) models in test calculations on

different datasets.

[66]

Identification of multitarget
activity ridges in

high-dimensional

bioactivity spaces

2012 M Extension of the activity ridge concept to the
multitarget case. SAR exploration of high-

dimensional activity spaces.

Systematic analysis of a high-dimensional
kinase inhibitor dataset released by Abbott

Laboratories by means of a new

representation format designed for these

ridges based on a scaffold–target matrix and
a scoring scheme developed to identify

compounds that were most variably

distributed across a multitarget ridge and

displayed target differentiation potential.

[81]
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TABLE 1 (Continued )

Publication title Pub.

year

Pub.

typea
Activity-cliff-related medicinal chemistry task Approach Refs

Matched molecular pair
analysis of small molecule

microarray data identifies

promiscuity cliffs and
reveals molecular origins

of extreme compound

promiscuity

2012 A Identification of ‘promiscuity cliffs’ (pairs of
structural analogs with single-site substitutions

that lead to large-magnitude differences in

apparent compound promiscuity) and the
substructures or small substructure

transformations that are generally responsible

for introducing promiscuity.

Patterns of compound promiscuity in a
publicly available small molecule microarray

dataset involving between 50 and 97

unrelated targets were analyzed utilizing the
matched molecular pair formalism.

[82]

Exploring SAR continuity

in the vicinity of activity
cliffs

2012 A Exploration of SAR continuity in the vicinity of

prominent activity cliffs.

Different compound datasets were mined for

the presence of SAR continuity within the
vicinity of prominent activity cliffs by using a

computational approach using particle

swarm optimization to examine the structural
neighborhood of activity cliffs for continuous

SAR components.

[83]

Bioactivity landscape

modeling: chemoinformatic

characterization of
structure–activity

relationships of compounds

tested across multiple
targets

2012 M Chemoinformatics characterization of

multitarget SARs.

Structure multiple activity similarity (SmAS)

maps and the structure multiple activity

landscape index (SmALI) were employed for
characterizing the SAR of three benchmark

sets of compounds screened with different

target families.

[42]

Identifying activity cliff

generators of PPAR

ligands using SAS maps

2012 M Identification of activity cliff generators

(molecular structure that has a high probability

to form activity cliffs with molecules tested in the
same biological assay).

SAS maps were used systematically to

identify and analyze activity cliff generators

present in a dataset of 168 compounds tested
against three peroxisome-proliferator-

activated receptor (PPAR) subtypes.

[61]

Scanning structure–activity

relationships with

structure–activity similarity
and related maps: from

consensus activity cliffs to

selectivity switches

2012 R Review of the development, practical

applications, limitations and perspectives of the

SAS and related maps that are intuitive and
powerful informatic tools to analyze SPRs

computationally.

– [41]

Exploring activity cliffs in
medicinal chemistry

2012 R Detailed description and discussion of the
multifaceted nature of activity cliffs, the

underlying scientific concepts and the

usefulness of the individual or systematic

analysis of activity cliffs to extract useful
information for medicinal chemistry programs.

– [5]

Rapid scanning structure–

activity relationships in

combinatorial data sets:
identification of activity

switches

2013 M Description of the SAR of combinatorial datasets

with activity for two biological endpoints. Rapid

identification of substitutions that have a large
impact on activity and selectivity such as ‘activity

switches’ (specific substitutions that have an

opposite effect on the activity of the compounds

against two targets) or single- and double-target
‘R-cliffs’ (compounds where a single or double

substitution around the central scaffold

dramatically modifies the activity for one or two
targets, respectively).

Dual-activity difference (DAD) maps were

applied for the visual and quantitative

analysis of all pairwise comparisons of one,
two or more substitutions around a molecular

template on a set of 106 pyrrolidine bis-

diketopiperazines tested against two

formylpeptide receptors obtained from
positional scanning deconvolution methods

of mixture-based libraries.

[28]

Compound pathway model

to capture SAR progression:

comparison of activity
cliff-dependent and

-independent pathways

2013 M Compound pathway model to monitor SAR

progression in compound datasets designed to

mimic compound optimization efforts.
Determination of SAR information gain

associated with activity cliffs.

Compound pathway model comprising

different pre-defined pathway categories.

[45]

Introduction of target cliffs

as a concept to identify

and describe complex
molecular selectivity

patterns

2013 M Description of complex molecular selectivity

patterns by introducing and applying the

concept of ‘target cliff’ (a pair of targets against
which at least one compound displays a large

difference in potency). Comparison of target

cliffs and activity cliffs for the identification and
prioritization of selective compounds revealing

relevant SAR information.

Target cliffs and activity cliffs are

systematically extracted from a data structure

termed target-compound matrices.

[84]
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TABLE 1 (Continued )

Publication title Pub.

year

Pub.

typea
Activity-cliff-related medicinal chemistry task Approach Refs

Activity cliffs in PubChem
confirmatory bioassays

taking inactive

compounds into account

2013 A Extension of the activity cliff concept to take
inactive compounds into consideration to

provide an additional source of SAR information.

Activity cliffs formed between pairs of active
compounds and pairs of active and inactive

compounds were systematically analyzed on

a per-assay basis. PubChem confirmatory
bioassays were used as source of confirmed

active and inactive compounds.

[52]

Do medicinal chemists learn

from activity cliffs? A

systematic evaluation of
cliff progression in evolving

compound data sets

2013 A Inspection over time of the presence of analogs

of activity cliffs in public databases to estimate

the extent activity cliff information is utilized in
practical medicinal chemistry.

Fifty-six compound datasets that evolved

over time were assembled and searched for

analogs of activity-cliff-forming compounds
with further increased potency.

[18]

Recent progress in

understanding activity cliffs
and their utility in medicinal

chemistry

2013 R Updated review of the recent studies applying

the activity cliff concept emphasizing those that
are particularly relevant for medicinal chemistry

applications. The general activity cliff definition

as well as the aspects to consider in activity cliff

analysis are revisited and detailed.

– [6]

Activity cliffs: facts or artifacts? 2013 R Integrated discussion of some of the major

aspects that raise the question whether all the

activity cliffs detected in compound datasets are

facts or just artifacts attributed to the molecular
representation and quantitative definition of

‘high’ structural similarity.

– [7]

Advancing the activity

cliff concept

2013 R Updated and concise, yet detailed, discussion of

the current understanding of activity cliffs. A
refined activity cliff concept is also introduced to

a general audience in drug development.

– [31]

Prediction of individual

compounds forming
activity cliffs using

emerging chemical

patterns

2013 M Prediction of individual compounds forming

activity cliffs.

Single compounds having high or low

potency are accurately predicted to
participate in activity cliffs on the basis of

emerging chemical patterns.

[85]

aM, A and R refer to whether the main results reported in the publication are focused on introducing a new method, application or review regarding the activity cliff issue.

R
eview

s
�K

E
Y
N
O
T
E
R
E
V
IE
W

respective detection methods. Box 1 shows a comparison of ISMs,

outliers and noise instances in machine learning and activity

landscape terms.

Smith and Martinez compared PRISM with three existing outlier

detection methods and one noise reduction technique using 48

datasets and nine learning algorithms [51]. Removing instances

identified by PRISM before training achieved the highest overall

classification accuracy compared with the machine learning algo-

rithms trained on the original datasets as well as with outliers

removed by the other methods. Rather than focusing on correctly

classifying the ISMs and arbitrarily adjusting the classification

boundary, removing the ISMs before training allows the machine

learning algorithm to focus on the instances that can be correctly

classified. In other words, the removal of ISMs allows the learning

process to focus on the observed patterns rather than memorizing

samples following no pattern. In this work, the authors demon-

strated that removing ISMs during training was the most effective

strategy with a high percentage of instances being detected as

ISMs. This approach can be extended to activity landscape model-

ing by removing activity cliffs to smooth out the activity landscape

(vide infra).

In addition to the PRISM algorithm [51], other outlier and/or

noise detection methods have been recently introduced demon-

strating their ability to improve the prediction accuracy of
1076 www.drugdiscoverytoday.com
machine learning models [53,54]. For example, Byeon et al.

introduced a novel technique to enhance the quality of training

data with a noisy dependent variable for binary classification

[53]. The approach termed Genetic Algorithm Prototype Selec-

tion uses a genetic algorithm (GA) to create the set of suspicious

noisy instances and prototype selection to identify the set of

actual noisy instances. The authors compared the performance

of GAPS with filtering methods implemented in Weka [55] on

two synthetic datasets created from the machine learning repo-

sitory of the University of California-Irvine (UCI; http://archi-

ve.ics.uci.edu/ml/datasets.html). Whereas the Weka-enhanced

datasets achieve similar levels of classification accuracy to noisy

datasets from the classifier, the GAPS approach reduced the

classification error over noisy datasets by approximately 26%

on average with different increasing noise levels. More recently,

based on the borderline noise factor, Yang and Gao applied data-

cleaning techniques to remove the classification borderline

noise. This work compared three under-sampling methods to

select the representative majority class examples and remove the

distant samples, which are useless to form the decision boundary

[54]. The experimental results on bench datasets showed that

the proposed method can effectively improve the classification

accuracy of minority classes while achieving better overall clas-

sification.

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
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BOX 1

To identify each type of data exception, the corresponding method
(Table I) takes into consideration the presence (+) or absence (�) of
extreme data values, instance mislabeling or class overlapping. The
latter is not considered (*) by outlier and noise detection methods.
Based on these three attributes: outliers can be defined as data
exceptions represented by extreme values on the descriptor and/
or property spaces not attributable to mislabeling; noise represents
data exceptions attributable to mislabeling; and ISMs are data
exceptions not attributable to mislabeling characterized by a high
degree of class overlap.
In Figure I the dot line represents a classification boundary
established by a hypothetical classifier. Instances 1 and 2 are
labeled as ISMs because they should be misclassified as a result of
class overlapping. Traditional outlier approaches would detect
instances 1 and 3 as outliers but would not consider instance 2 as
an outlier because it is not sufficiently different from the (�)
instances and class is not taken into account. Noise reduction
techniques cannot remove instance 1 because it is sufficiently
different from the (�) instances.
Assuming the 2D plot (plane) as the descriptor space. Let + be
‘active’ compounds and � be ‘inactive’ compounds. In this case,
active compounds 1 and 2 are similar in the descriptor space to the
inactive compounds in the dataset and therefore can be regarded
as activity cliffs. Therefore, a SAR dataset can actually comprise
compounds exhibiting significantly different molecular descriptor
and/or potency values (outliers) that are not necessarily annotation
and/or measurement errors (noise). By contrast, a SAR dataset can
actually contain structurally similar compounds exhibiting
significantly different potency values (activity cliffs or ISMs) that
cannot necessarily be attributed to annotation errors (noise or
pseudo cliffs).

TABLE I

Main attributes defining outliers, noise and ISMs considered by
the respective detection methods.

Extreme value Mislabeling Class overlapping

Outlier + � *

Noise � + *

ISM � � +

+
3

+
2

+
1

+

+ +

+ +

+

+
+ +

+

+

+ +
+

+

+

++ –

–

–
–

–

–

– –
– –

–

–

––

–
–

––

––

–

––
–

––

–
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FIGURE I

A hypothetical 2D dataset illustrating ISMs, outliers and noise instances in
machine learning and activity landscapes terms.
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Because removing problematic instances (e.g. compounds) is a

well-justified practice in machine learning to improve the predic-

tion accuracy of models [51,53,54,56], it follows that it is reason-

able to remove activity cliffs (smoothing out the activity

landscape) for developing predictive QSAR models. The obvious

drawback of this procedure is the inevitable loss of potentially

crucial SAR information. However, this is the price that has to be

paid in favor of the generalization ability of machine learning

models, given that the primary goal is their use as prediction or

virtual screening tools (i.e. in early hit identification stages). As

such, although activity cliffs are not included in the predictive

quantitative models, qualitatively it is still possible to interpret

and take advantage of their rich SAR information content. This

information can be complemented in further stages of drug dis-

covery (i.e. lead optimization). In this way, the qualitative appli-

cation of similarity analyses such as the network-like similarity

graph (NSG) approach implemented on SARANEA [57] can com-

plement previous SAR information derived from QSAR models. A

recent example of the complementary use of QSAR and NSG

approaches for SAR information mining is provided in Ref. [58].

Each stage of the drug discovery process imposes different prio-

rities and such trade-off decisions highly influence its chance of

success. Besides all this, other less obvious but also important

issues on the ACG removal procedure will be addressed in the

following section.
Activity cliffs and QSAR: resignation or remediation?
Despite the fact that the detrimental effect of activity cliffs in QSAR

modeling is well accepted [59,60], to the best of our knowledge

there are no reports directed at reducing SAR discontinuity on a

dataset by removing activity cliffs and making the dataset amen-

able to QSAR and similarity-based methods. Similarly, there are no

reports addressing whether the removal of activity cliffs from a

dataset is beneficial, detrimental or nonsignificant for deriving

general models of the SAR. So far, most of the chemoinformatics

applications are focused on the description of the actual SAR and

identification of activity cliffs [6,31]. As commented above, for

practical purposes (i.e. for medicinal chemists) activity cliffs can

provide key information to understand the SAR and guide lead

optimization efforts [5,6].

Restoring SAR continuity by identification and removal of
activity cliff generators
Arguably, the closest concept to an ISM in activity landscape

modeling is that of an activity cliff generator (ACG), which is

defined as a molecular structure that has a high probability of

forming activity cliffs with molecules tested in the same biological

assay [61]. In analogy with machine learning methods identifying

and removing ISMs, one can propose identifying and removing

ACGs. As noted above, removal of ACGs is different from removal

of outliers in traditional QSAR.
www.drugdiscoverytoday.com 1077
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Ideally, the concepts of consensus activity cliffs [25] or MMP-

cliffs [26] should be applied for the identification of ACGs. The

consensus ACGs identified using several representations should

behave as such, irrespective of the reference space used or, at least,

for most of the possible reference spaces. As discussed above,

fingerprints are truly ligand-centric representations based on a

global similarity definition and therefore better suited to codify

global structure similarities. By contrast, scalar molecular descrip-

tors codify local aspects of the molecular structure and can indir-

ectly take into account ligand–target interaction information, and

so might be better suited for an efficient SAR modeling [39].

Once the consensus ACGs previously identified have been

removed, the goal is that the original training set fulfills the assump-

tion made by the machine learning algorithm to be used for model

construction, which is also the main premise of QSAR modeling.

Additional curation [62] and balancing procedures [63,64] should

also be applied to match the goals of the QSAR paradigm [9] and the

machine learning algorithm [48]. As discussed above, removal of

outliers in classical QSAR is an a posteriori procedure directed at

improving the performance of a QSAR model and it depends on the

reference space. By contrast, ACG detection and removal is done to

optimize the training set for machine learning modeling before any

modeling effort and it is independent of the reference space.

The essence of this solution is to remove from the training

process those compounds responsible for the SAR discontinuity,

and consequently restore the SAR continuity required for deriving

reliable and predictive QSAR models (Fig. 1). However, the ques-

tion that remains is to what extent the learning process is affected

by the loss of the information encoded in the activity cliff pairs

and therefore the generalization ability of the pattern found. In

fact, according to Maggiora: ‘some of the outliers may, in fact, be

activity cliffs. Thus, removing such points would severely preju-

dice model’s predictive capabilities’ [9].
P
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FIGURE 1

Representation of the SAR continuity restoration by detection and removal of activ

learning modeling. (a) A hypothetical rugged activity landscape is smoothed out 

activity landscape and how a rugged one is smoothed out by detecting and removi
with a red circle.
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This observation brings some questions outlined below.
� Is it possible to develop models that predict activity cliffs? The

answer to this question is yes. The prediction of coordinated

activity cliffs was addressed by Namasivayam and Bajorath [65]

using machine learning techniques; specifically, a particle

swarm optimization guided by subset discontinuity scoring.

Compounds forming the largest coordinated activity cliffs were

automatically extracted from large compound datasets. Simi-

larly, SVM models were derived to predict activity cliffs

successfully [66]. In test calculations on different datasets,

activity cliffs were accurately predicted using specifically

designed structural representations and kernel functions.
� Is it feasible to preserve the model capabilities to predict SAR

without removing the activity cliffs? There is not a definitive

answer to this question. As can be noted (and expected), the very

nature of activity cliffs hinders any possible consensus on how to

deal with its negative impact on QSAR modeling. Even more

discouraging, Maggiora concluded in his editorial [9] (referring to

activity cliffs and other problems inherent to the QSAR

approach) that: ‘addressing all of these problems is a daunting

task at best, and it may not be possible to treat some of them in

any substantive way’. So, we have no other option than to try a

procedure supposed to be valid but checking the ability of a

model trained under these conditions to predict ACGs correctly.
� Will ACG removal enhance the performance of the models in

prospective applications? Can this procedure help a medicinal

chemist to prioritize compounds for synthesis and/or screen? A

trade-off should be found when removing compounds because

this implies a restored SAR continuity but also a reduction of AD.

A possible solution could be to find a balance between the

predictive ability of the newly developed QSAR models and their

AD. By contrast, according to Guha [50] even if a machine

learning model captures the most significant activity cliffs
P
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ity cliff generators (ACGs) from the training set to be employed for machine

to restore SAR continuity. (b) 2D schematic representation of a hypothetical

ng ACGs. Compounds are represented by blue dots and ACGs are highlighted



Drug Discovery Today � Volume 19, Number 8 �August 2014 REVIEWS

R
ev
ie
w
s
�
K
E
Y
N
O
T
E
R
E
V
IE
W

present in the SAR landscape it comes at a cost. By requiring that

the model encodes at least some of the significant activity cliffs,

this introduces some degree of overfitting, because the most

significant cliffs would correspond to discontinuities that would

have to be memorized by the model. So, we might be forced to

choose between a predictive model with a certain loss of

applicability domain (by removing ACGs) or a model efficiently

capturing the SAR but at the cost of a certain degree of overfitting,

which hampers its predictive ability (by keeping ACGs).

A remedial measure to diminish the loss of applicability domain

can be to develop several diverse machine learning models and

implement a consensus classifier [67,68]. It is well known that

multiple, ensemble or consensus classifiers are effective mainly

because they span the decision space because each base classifier

covers a different region of the decision space (chemical space or

SAR) and the union of all the base classifiers produces a common

region that results in a wider coverage of chemical space or

applicability domain [67,69]. It is the authors’ opinion that it is

worth testing the hypothesis of ACG removal because reduction of

the applicability domain seems to have a remedial solution,

whereas overfitting does not.

Concluding remarks: Dr Jekyll or Mr Hyde?
In summary, the analyses provided in this review enable confir-

mation that the influence of activity cliffs on medicinal chemistry

tasks has been extensively studied and documented. Activity cliffs

are constantly faced in drug discovery and optimization efforts

having a large influence on medicinal chemists to interpret SAR

and decide what to synthesize and/or screen next. In addition,

chemoinformatics approaches have been developed to detect

activity cliffs in datasets systematically and efforts are being made

to predict the presence of activity cliffs. However, the detrimental

effects on the application of QSAR and similarity-based approaches

have been disproportionally understudied. So, to fill this gap
regarding the activity cliff problem, more studies must be con-

ducted not only to study the effect of activity cliffs over the

generalization ability of machine learning models but also to

provide potential solutions to overcome such limitation. There-

fore, from a chemoinformatics point of view and paraphrasing the

fictional character Sheldon Cooper from the popular television

series The Big Bang Theory: ‘It’s high time to address the tweepadock

in the room’.

The impact of activity cliffs on chemoinformatics and medic-

inal chemistry applications has two ‘faces’. Activity cliffs provide

medicinal chemists with fundamental information to understand

the underlying SAR of the dataset, which could significantly

contribute to lead optimization efforts. However, the presence

of activity cliffs seriously affects the generalization ability of

machine learning models. One can work with such ‘duality’ of

the activity cliffs depending on the goals of the project (e.g. using

activity cliffs to retrieve fundamental SAR information or remove

activity cliffs to smooth out the landscape and develop quantita-

tive models for prospective applications). Therefore, activity cliffs,

like Dr Henry Jekyll in the famous novel by Robert Louis Steven-

son, will unavoidably have to co-exist with their alter ego. But,

unlike the novel, in real life drug discovery there is no miraculous

formula to isolate the good from the dark side of activity cliffs.

Finally, we conclude that the role of activity cliffs in drug discovery

is neither akin to Dr Jekyll nor Mr Hyde – it is more likely to be a

combination of the two.
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