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Recent advances in the discovery and development of antibody–drug conjugates
have led to FDA approvals and a rich clinical pipeline of promising

new cancer therapies.
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Antibody–drug conjugates (ADCs) aim to take advantage of the specificity of

monoclonal antibodies (mAbs) to deliver potent cytotoxic drugs selectively

to antigen-expressing tumor cells. Despite the simple concept, various

parameters must be considered when designing optimal ADCs, such as

selection of the appropriate antigen target and conjugation method. Each

component of the ADC (the antibody, linker and drug) must also be

optimized to fully realize the goal of a targeted therapy with improved

efficacy and tolerability. Advancements over the past several decades have

led to a new generation of ADCs comprising non-immunogenic mAbs,

linkers with balanced stability and highly potent cytotoxic agents.

Although challenges remain, recent clinical success has generated intense

interest in this therapeutic class.

Introduction
The past decade has seen significant advances in new cancer treatments through the development

of highly selective small molecules that target a specific genetic abnormality responsible for the

disease [1,2]. Although this approach has seen great success in application to malignancies with a

single, well-defined oncolytic driver, resistance is commonly observed in more complex cancer

settings [3,4]. Traditional cytotoxic agents are another approach to treating cancer; however,

unlike target-specific approaches, they suffer from adverse effects stemming from nonspecific

killing of both healthy and cancer cells. A strategy that combines the powerful cell-killing ability

of potent cytotoxic agents with target specificity would represent a potentially new paradigm in

cancer treatment. ADCs are such an approach, wherein the antibody component provides

specificity for a tumor target antigen and the drug confers the cytotoxicity. Here, we present

key considerations for the development of effective ADCs and discuss recent progress in ADC

technology for application to the next wave of cancer therapeutics. Advances in other modalities

of antibody-mediated targeting, such as immunotoxins, immunoliposomes and radionuclide

conjugates, have been extensively reviewed elsewhere [5,6].
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Historical perspective
The origin of ADCs can be traced back over a century to the

German physician and scientist Paul Ehrlich, who proposed the

concept of selectively delivering a cytotoxic drug to a tumor via a

targeting agent (Fig. 1) [7,8]. Ehrlich coined the term ‘magic bullet’

to describe his vision, similar to the descriptors ‘warhead’ or

‘payload’ commonly used for the drug component of current

ADCs. Nearly 50 years later, Ehrlich’s concept of targeted therapy

was first exemplified when methotrexate (MTX) was linked to an

antibody targeting leukemia cells [9]. Early research relied on

available targeting agents, such as polyclonal antibodies, to enable

preclinical efficacy studies in animal models with both noncova-

lent-linked ADCs and later covalently linked ADCs [10–12]. In

1975, the landmark development of mouse mAbs using hybri-

doma technology by Kohler and Milstein greatly advanced the

field of ADCs [13]. The first human clinical trial followed less than

a decade later, with the antimitotic vinca alkaloid vindesine as the

cytotoxic payload [14]. Further advances in antibody engineering

enabled the production of humanized mAbs with reduced immu-

nogenicity in humans compared with the murine mAbs used for

early ADCs [15].

First-generation ADCs typically used clinically approved drugs

with well-established mechanisms of action (MOAs), such as anti-

metabolites (MTX and 5-fluorouracil), DNA crosslinkers (mitomy-

cin) and antimicrotubule agents (vinblastine) [16]. In addition to
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Antibody–drug conjugate (ADC) timeline. Abbreviations: mAbs, monoclonal antibo
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the immunogenicity issues observed with murine mAbs, these

early attempts were met with limited success for several reasons,

including low drug potency, high antigen expression on normal

cells and instability of the linker that attached the drug to the mAb

[17]. Lessons learned from these initial failures led to a new

generation of ADCs, several of which entered and later failed

human clinical trials. For example, doxorubicin conjugate 1

(BR96-DOX) was designed using a bifunctional linker, wherein

the drug was appended via a hydrazone, and a maleimide enabled

conjugation to the BR96 antibody via cysteine residues (Fig. 2)

[18]. Although curative efficacy was observed in human tumor

xenograft models, the relatively low potency of doxorubicin

necessitated high drug:antibody ratios (DARs, eight per antibody)

and high doses of the ADC to achieve preclinical activity. In

clinical trials, significant toxicity was observed due to nonspecific

cleavage of the relatively labile hydrazone linker and expression of

the antigen target in normal tissue [19].

Further advancements, including higher drug potency and care-

fully selected targets, ultimately led to the first ADC to gain US Food

and Drug Administration (FDA) approval in 2000 (Mylotarg1,

gemtuzumab ozogamicin, 2) [20,21]. Despite initially encouraging

clinical results, Mylotarg1 was withdrawn from the market a

decade later owing to a lack of improvement in overall survival.

In 2011, following an accelerated approval process, a second ADC

(Adcetris1, brentuximab vedotin, 3) gained marketing approval
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FIGURE 2

Structures of antibody–drug conjugates (ADCs).
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from the FDA for the treatment of Hodgkin’s (HL) and anaplastic

large-cell lymphomas (ALCL) [22,23]. Most recently, Kadcyla1 (ado-

trastuzumab emtansine, T-DM1, 4), which combines the huma-

nized antibody trastuzumab with a potent antimicrotubule cyto-

toxic agent using a highly stable linker, was approved for the

treatment of patients with Her2-positive breast cancer [24,25]. With

nearly 30 additional ADCs currently in clinical development, the

potential of this new therapeutic class might finally be coming to

fruition [26].

ADC design
Although simple in concept, the success of a given ADC depends

on careful optimization of each ADC building block: antibody,

drug and linker (Fig. 3) [27]. The chosen antibody should target a

well-characterized antigen with high expression at the tumor site

and low expression on normal tissue to maximize the efficacy of

the ADC while limiting toxicity. Bifunctional linkers with attach-

ment sites for both the antibody and drug are used to join the two

components. With respect to the mAb, existing linker attachment

strategies typically rely on the modification of solvent-accessible

cysteine or lysine residues on the antibody, resulting in hetero-

geneous ADC populations with variable DARs. Given that low drug

loading reduces potency and high drug loading can negatively

impact pharmacokinetics (PK), DARs can have a significant impact

on ADC efficacy. In addition, the linker must remain stable in

systemic circulation to minimize adverse effects, yet rapidly cleave

after the ADC finds its intended target antigen. Upon antigen

recognition and binding, the resulting ADC receptor complex is

internalized through receptor-mediated endocytosis [28]. Once
inside the cell, the drug is released through one of several mechan-

isms, such as hydrolysis or enzymatic cleavage of the linker or via

degradation of the antibody. Typically, the unconjugated drug

should demonstrate high potency, ideally in the picomolar range,

to enable efficient cell killing upon release from the ADC.

Target antigens and antibody selection
Although the basic premise that a successful ADC should target a

well-internalized antigen with low normal tissue expression and

high expression on tumors remains true, the field is evolving to

refine these parameters. For example, antigen expression on nor-

mal tissues can be tolerated if expression on vital organs is minimal

or absent. The FDA approval of Kadcyla1 for Her2-positive breast

cancer highlights this point since Her2/neu, a member of the

epidermal growth factor receptor (EGFR) family, is not only

expressed in breast tissue, but also in the skin, heart and on

epithelial cells in the gastrointestinal, respiratory, reproductive

and urinary tracts [29]. In addition, prostate-specific membrane

antigen (PSMA) is an ADC target expressed both on prostate cancer

cells as well as normal prostate and endothelial tissue [30]. Given

that most patients with prostate cancer undergo surgery to remove

their prostate, selective expression relative to normal prostate cells

might not be crucial in this setting. Furthermore, apical expression

of PSMA on the kidney and gastrointestinal tract might prevent

the ADC from accessing these tissues. Other possible exceptions

include hematological malignancies in which normal target tis-

sues are able to regenerate, supported by the case of rituximab

where depletion of normal B cells was not a major safety issue in

patients [31]. Accessibility of the ADC to the target antigen is also
www.drugdiscoverytoday.com 871
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FIGURE 3

Key components of an antibody–drug conjugate (ADC). Abbreviation: PK, pharmacokinetics.

TABLE 1

Target antigens for ADCs in preclinical and clinical development

Indication Targets

NHL CD19, CD20, CD21, CD22, CD37, CD70, CD72,

CD79a/b and CD180

HL CD30

AML CD33

MM CD56, CD74, CD138 and endothelin B receptor

Lung CD56, CD326, CRIPTO, FAP, mesothelin, GD2,

5T4 and alpha v beta6

CRC CD74, CD174, CD227 (MUC-1), CD326 (Epcam),

CRIPTO, FAP and ED-B

Pancreatic CD74, CD227 (MUC-1), nectin-4 (ASG-22ME)
and alpha v beta6

Breast CD174, GPNMB, CRIPTO, nectin-4 (ASG-22ME)

and LIV1A

Ovarian MUC16 (CA125), TIM-1 (CDX-014) and mesothelin

Melanoma GD2, GPNMB, ED-B, PMEL 17 and endothelin
B receptor

Prostate PSMA, STEAP-1 and TENB2

Renal CAIX and TIM-1 (CDX-014)

Mesothelioma Mesothelin

Abbreviations: AML, acute myeloid leukemia; MM, multiple myeloma; CRC, colorectal

cancer.
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an important consideration. In addition to high interstitial pres-

sure in the tumor, endothelial, stromal and epithelial barriers can

limit ADC uptake, resulting in only a small percentage of the

injected dose reaching the intended tumor target [32]. From a

biology perspective, the design of an effective ADC relies on

selection of an appropriate target antigen, taking into account

tumor expression levels, rates of antigen internalization and anti-

body Fc format.

Tumor types

Table 1 highlights the broad range of hematologic and solid tumor

indications targeted by ADCs currently in preclinical or clinical

development. Several of these tumor-associated antigens exhibit

remarkable specificity, such as CD30 for HL and MUC16 for

ovarian cancer. Other antigens, such as CD74, are expressed in

multiple tumor types.

Antigen expression

In general, optimal ADC targets are homogeneously and selec-

tively expressed at high density on the surface of tumor cells.

Homogenous tumor expression, although preferred, is likely not

an absolute requirement owing to the ability of some ADCs to

induce bystander killing. Under these circumstances, a membrane-

permeable free drug liberated after intracellular cleavage of the

linker can efflux from the cell and enter neighboring cells to

facilitate cell death [33]. Most advanced ADCs in the clinic target

hematological indications, in part due to the largely homogeneous

expression of antigen in liquid tumors, despite frequently low

receptor densities. Although the treatment of solid tumors with

heterogeneous antigen expression might benefit from bystander

killing, the potential to harm normal cells could contribute to

systemic toxicity.

Current experimental evidence generally suggests that tumor

antigen density (expression level) does not directly correlate

with ADC efficacy [34]. When patient samples are accessible,

the number of receptors per cell can be quantified using flow
872 www.drugdiscoverytoday.com
cytometry, immunohistochemistry (IHC) or radiolabeled satura-

tion-binding studies to assess the relation between target expres-

sion and efficacy [35]. In non-Hodgkin’s lymphoma (NHL) cell

lines, high CD79b expression was found to be a prerequisite for in

vitro response to an anti-CD79b auristatin conjugate (RG-7596,

Roche-Genentech); however, a wide range of sensitivities were

observed, indicating that a minimal expression threshold exists

[36]. Likewise, melanoma cells lines with receptor densities vary-
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ing from 20,000 to 280,000 binding sites per cell were sensitive to

an anti-p97-auristatin conjugate [37]. This threshold level varies

among different targets based on the unique factors of the anti-

gen, such as rate of internalization and binding affinity for the

ADC. For example, approximately 5,000–10,000 copies of CD33,

the antigen target for Mylotarg1, are expressed per cell [38]. As

with Mylotarg1, no significant correlation was observed between

the activity of a preclinical anti-CD33 pyrrolobenzodiazepine

conjugate (SG-CD33A, Seattle Genetics) and CD33 levels in a

panel of acute myeloid leukemia (AML) cell lines [39]. An anti-

PSMA auristatin conjugate (PSMA ADC, Progenics/Seattle Genet-

ics) demonstrated potent in vitro cytotoxicity versus cells expres-

sing >105 PSMA molecules per cell, with 104 receptors per cell

serving as a threshold level [40]. For some tumor antigens, how-

ever, a relatively proportional relation between efficacy and

receptor expression level has been observed. In the case of an

anti-endothelin B receptor (EDNBR) auristatin conjugate,

improved efficacy against human melanoma cells lines and xeno-

graft tumor models generally correlated with increasing EDNBR

expression (1,500–30,000 copies per cell) [41].

Antigen internalization

Ideally, once an ADC binds to a tumor-associated target, the ADC–

antigen complex is internalized in a rapid and efficient manner.

Although poorly understood, various factors are likely to influence

the rate of internalization, such as the epitope on the chosen target

antigen bound by the ADC, the affinity of the ADC–antigen

interaction and the intracellular trafficking pattern of the ADC

complex [42–44]. For example, anti-Her2 antibodies that bind

distinct epitopes on Her2 have been shown to impact downstream

trafficking and lysosomal accumulation differentially, despite

binding to the same cell surface receptor [45]. Several ADCs,

including Adcetris1, have been shown to internalize with rates

similar to or greater than the corresponding unconjugated anti-

bodies [46–48,37]. Certain antigens mediate exceptionally rapid

accumulation of ADCs inside cells. When bound to ligand-acti-

vated EGFR, Her2 monomer is internalized at a rate up to 100-fold

greater than carcinoembryonic antigen (CEA) [49,50]. Likewise,

the catabolic rate of antibodies targeting CD74 is approximately

100 times faster than other antibodies that are considered to

rapidly internalize, such as anti-CD19 and anti-CD22 [51]. The

preclinical data for milatuzumab-DOX (Immu-110), an anti-CD74

doxorubicin conjugate in early clinical trials, suggest this agent is

equipotent to ADCs comprising more potent drug payloads that

target slower internalizing antigens [52].

Alternative approaches have been explored in which antigen

internalization is not required for efficient cell killing. The extra-

domain B (ED-B) of fibronectin is a marker of angiogenesis

undetectable in healthy tissue, but highly expressed around

tumor blood vessels [53]. Anti-ED-B antibodies have been shown

to localize to the subendothelial extracellular matrix of tumor

vasculature. Conjugation of these antibodies with a photosen-

sitizer has led to agents that selectively disrupt tumor blood

vessels upon irradiation, resulting in curative efficacy in mouse

models [54].

Impact of format

The biological activity of an antibody can depend on the interac-

tion of its Fc portion with cells that express Fc receptors (FcRs).

Therefore, selection of the appropriate antibody format for an
ADC is an important consideration. Broad understanding of the

relation between antibody Fc format and ADC function is lacking

since species differences in immune systems complicate preclini-

cal studies. In one study, McDonagh et al. conjugated anti-CD70

antibody immunoglobin G (IgG) variants (IgG1, IgG2 and IgG4) to

an auristatin (ADC toxin monomethyl auristatin F; MMAF) to

determine the effect of format on ADC function [55]. In addition,

the Fc regions of IgG1 and IgG4 were mutated (IgG1v1 and

IgG4v3) to examine the influence of IgG receptor (FcgR) binding.

Although all the ADCs demonstrated potent in vitro cytotoxicity

and were well tolerated in mice, the engineered IgGv1-MMAF

conjugate displayed improved antitumor activity and increased

exposure, which correlated with a superior therapeutic index

compared to the parent IgG1 conjugate.

In the absence of definitive guidelines for selecting an optimal

antibody format, all human IgG isotypes, except for IgG3, are

currently used for ADCs in clinical trials. IgG1, the most com-

monly used format, can potentially engage secondary immune

functions, such as antibody-dependent cellular cytotoxicity

(ADCC) or complement-dependent cytotoxicity (CDC). These

inherent effector functions could prove beneficial by providing

additional antitumor activity, as in the case of Kadcyla1, which

was shown to activate ADCC in preclinical models [56]. Adcetris1,

however, demonstrated minimal ADCC and no detectable CDC

despite its IgG1 format [57]. The absence of effector functions is

potentially advantageous as binding of an ADC to effector cells

could reduce tumor localization, hinder internalization and lead

to off-target toxicity [55]. Unlike IgG1, IgG2 and IgG4 typically

lack Fc-mediated effector functions. Mylotarg1 and inotuzumab

ozogamicin (CMC-544) exhibited no ADCC or CDC in preclinical

studies, consistent with their IgG4 format [58]. Overall, the con-

tribution of IgG effector functions to the efficacy, selectivity and

toxicity of ADCs is not yet well understood.

In addition to effector functions, ADCs often retain other

biological properties associated with their parent mAbs, such

as immunogenicity potential. Limited therapeutic efficacy of

early ADCs comprising murine mAbs prompted the develop-

ment of chimeric and humanized antibodies, which minimize

human immune response. Conversion of murine mAbs to

human IgGs also results in longer retention in systemic circula-

tion due to recognition by the human neonatal Fc receptor

(FcRn) and a greater ability to elicit ADCC [59]. Technologies

for the generation of fully human mAbs include the use of either

phage display or transgenic mouse platforms, in which a mouse

strain is engineered to produce human rather than mouse anti-

bodies [60].

Linker technology and stability
The identity and stability of a linker that covalently tethers the

antibody to the cytotoxic drug is crucial to the success of an ADC.

Sufficient linker stability is necessary to enable the conjugate to

circulate in the bloodstream for an extended period of time before

reaching the tumor site without prematurely releasing the free

drug and potentially damaging normal tissue. Once the ADC is

internalized within the tumor, the linker should be labile enough

to efficiently release the active free drug. Linker stability also

influences overall toxicity, PK properties and the therapeutic index

of an ADC. The lack of adequate therapeutic index for earlier
www.drugdiscoverytoday.com 873
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TABLE 2

Examples of ADC drug linkers

Cleavable linkers Noncleavable linkers

Valine-Citrulline (protease sensitive)

Cytotoxin
N-Maleimidomethylcyclohexane-1-carboxylate (MCC)

Cytotoxin

Hydrazone (acid-sensitive)

Cytotoxin

Maleimidocaproyl

Cytotoxin

Disulfide (glutathione-sensitive)

Cytotoxin Mercaptoacetamidocaproyl

Cytotoxin
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ADCs, such as BR96-DOX and Mylotarg1, has been attributed to

poor linker stability (Fig. 1) [19,61].

The two main classes of ADC drug linkers currently being

explored take advantage of different mechanisms for release of

the drug payload from the antibody (Table 2). The first is a

cleavable linker strategy, with three different types of release

mechanism within this class.

(i) Lysosomal protease sensitive linkers. This strategy utilizes

lysosomal proteases, such as cathepsin B (catB), that

recognize and cleave a dipeptide bond to release the free

drug from the conjugate [62]. Many ADCs in the clinic use a

valine–citrulline dipeptide linker, which was designed to

display an optimal balance between plasma stability and

intracellular protease cleavage [63]. This linker strategy was

successfully utilized by Seattle Genetics/Millennium in the

case of Adcetris1 [64].

(ii) Acid sensitive linkers. This class of linkers takes advantage of

the low pH in the lysosomal compartment to trigger

hydrolysis of an acid labile group within the linker, such

as a hydrazone, and release the drug payload. In preclinical

studies, hydrazone linker-based conjugates have shown

stability (t1/2) ranges from 2 to 3 days in mouse and human

plasma, which may not be optimal for an ADC [65].

Hydrazone linkers were used in Mylotarg1 (anti-CD33

calicheamicin conjugate) and recently in inotuzumab

ozogamicin (anti-CD22 calicheamicin conjugate) [66,67].

The withdrawal of Mylotarg1 from the market was attributed

to toxicities related to hydrazone linker instability, which

resulted in increased fatalities in patients treated with

Mylotarg1 plus chemotherapy as opposed to chemotherapy

alone [65]. Similarly, inotuzumab ozogamicin was recently

withdrawn from a phase III clinical trial owing to a lack of

improvement in overall survival.
874 www.drugdiscoverytoday.com
(iii) Glutathione sensitive linkers. This strategy exploits the

higher concentration of thiols, such as glutathione, inside

the cell relative to the bloodstream. Disulfide bonds within

the linker are relatively stable in circulation yet are reduced

by intracellular glutathione to release the free drug. To

further increase plasma stability, the disulfide bond can be

flanked with methyl groups that sterically hinder premature

cleavage in the bloodstream [68]. This class of linker has been

used in several clinical candidates, such as SAR3419 (anti-

CD19 maytansine conjugate), IMGN901 (anti-CD56 may-

tansine conjugate) and AVE9633 (anti-CD33 maytansine

conjugate) developed by ImmunoGen and its partners [67].

The second strategy is one that uses noncleavable linkers. This

approach depends on complete degradation of the antibody after

internalization of the ADC, resulting in release of the free drug

with the linker attached to an amino acid residue from the mAb. As

such, noncleavable linker strategies are best applied to payloads

that are capable of exerting their antitumor effect despite being

chemically modified. This type of strategy has been used success-

fully by Genentech/Immunogen with Kadcyla1 (trastuzumab-

MCC-DM1). The released modified payload (lysine-MCC-DM1)

demonstrated similar potency compared with DM1 alone,

although the charged lysine residue is likely to impair cell perme-

ability and hence abate the bystander killing observed with the

free drug [69]. One potential advantage of noncleavable linkers is

their greater stability in circulation compared with cleavable

linkers. However, no significant difference in terminal half-life

(t1/2) values was observed in the clinic between Kadcyla1 [24],

which contains a noncleavable linker, and Adcetris1, which

employs a cleavable linker [22].

Preclinically, linker strategies continue to evolve [70,71].

Additional tumor-associated proteases, such as legumain, have

been identified that release the ADC payload in nonlysosomal
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compartments (i.e. the endosome) [72]. Other nonprotease

enzymes have recently been exploited for the selective cleavage

of b-glucuronidase and b-galactosidase sensitive linkers in the

lysosome [73,74]. Demonstrating expanded utility, these

approaches enable drug linkage via a phenol functional group

in addition to a more traditional basic amine residue.

Cytotoxic agents
Payload classes and MOAs

There are two main classes of ADC payloads undergoing clinical

evaluation. The first class comprises drugs that disrupt microtu-

bule assembly and play an important role in mitosis. This class

includes cytotoxics, such as dolastatin 10-based auristatin analogs

(3, Adcetris1) [64] and maytansinoids (4, Kadcyla1) [75]. The

second class of payloads consists of compounds that target DNA

structure and includes calicheamicin analogs, such as Mylotarg1

(2), that bind the minor groove of DNA causing DNA double-

strand cleavage [76]. Duocarmycin analogs (MDX-1203, 5) [77]

participate in a sequence-selective alkylation of adenine-N3 in the

minor groove of DNA to induce apoptotic cell death (Fig. 4).

One common feature among these cytotoxic agents is that they

demonstrate at least 100–1000-fold greater potency in in vitro
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Representative antibody–drug conjugate (ADC) payload structures.
proliferation assays against a broad range of tumor cell lines

compared with conventional chemotherapeutic agents, such as

paclitaxel and doxorubicin [78,79]. The high potency of these

alternative payloads is crucial since only an estimated 1–2% of the

administered ADC dose will ultimately reach the tumor site,

resulting in low intracellular drug concentrations [80]. Unlike

earlier ADCs that failed to make a meaningful impact in the clinic

owing to low drug potency and suboptimal delivery, newer, more

potent cytotoxic compounds are now the focus of preclinical

research. For example, pyrrolobenzodiazepine (PBD) dimers 6

covalently bind the minor groove of DNA, resulting in a lethal

interaction due to cross-linking of opposing strands of DNA [81].

a-Amanitin 7, a cyclic octapeptide found in several species of the

Amanita genus of mushrooms, strongly inhibits RNA polymerase

II, leading to inhibition of DNA transcription and cell death [82].

Tubulysins 8, similar to auristatins and maytansine, inhibit tubu-

lin polymerization to induce apoptosis [83–85].

Addressing drug resistance

In addition to potency, the sensitivity of cytotoxic agents to

multidrug resistance (MDR) mechanisms is a factor to consider

in selecting the optimal payload for an ADC. Cancer cells have the

ability to become resistant to multiple drugs via increased efflux of
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FIGURE 5

Random and site-specific conjugation strategies. Antibody–drug conjugate (ADC) products of random conjugation comprise chemically heterogeneous species

(a), whereas site-specific conjugation methods produce fairly homogeneous product profiles (b).
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the drug by either P-glycoprotein (Pgp) or other multidrug-resis-

tance proteins (e.g. MRP1 and MRP3) [86]. The sensitivity of

cytotoxic drugs to MDR mechanisms can be measured in vitro.

In the case of Mylotarg1, in vitro cytotoxicity assays in AML cell

lines indicated that Pgp expression altered the potency of the

calicheamicin payload and that drug potency could be restored

by adding known efflux transporter antagonists to inhibit Pgp and

MRP-1 proteins [87]. These results were relevant for patients with

AML as levels of Pgp expression in the clinic were found to

correlate directly with responders and nonresponders [88,89].

Another interesting example related to MDR mechanisms

involves AVE9633, which comprises an anti-CD33 antibody linked

through a disulfide bond to the maytansine analog DM4. In vitro

data clearly demonstrated that the cytotoxicity of AVE9633 and

the DM4 free drug were highly dependent on the expression level

of Pgp protein in myeloid cell lines [90]. As with the calicheamicin

payload of Mylotarg1, the potency of DM4 could be restored in

Pgp-overexpressing cell lines by adding known inhibitors of Pgp.

However, Pgp activity was not found to be a major mechanism of

resistance for the AVE9633 conjugate in cells from patients with

AML. Reasons for the lack of correlation are unclear; other

mechanisms such as microtubule alteration were proposed for

chemoresistance to AVE9633.

Conjugation strategies
For most ADCs in clinical development, conjugation of the drug

payload to the antibody involves a controlled chemical reaction

with specific amino acid residues exposed on the surface of the

mAb. Given that this process results in a mixture of ADC species

with variable DARs and linkage sites, alternative conjugation

strategies aimed at minimizing heterogeneity have been devel-

oped. In the overall design of an ADC, selection of the appropriate
876 www.drugdiscoverytoday.com
drug-conjugation strategy significantly impacts efficacy, PK and

tolerability. As such, careful consideration of the various conjuga-

tion technologies for ADC generation is warranted (Fig. 5).

Chemical conjugation

In one type of chemical conjugation, a reactive moiety pendant to

the drug–linker is covalently joined to the antibody via an amino

acid residue side chain, commonly the e-amine of lysine. As

demonstrated with Mylotarg1, direct conjugation of lysine resi-

dues on gemtuzumab was achieved using an N-hydroxysuccini-

mide (NHS) ester appended to the drug–linker to form stable amide

bonds [91]. A two-step process can also be used in which surface

lysines on the antibody are first modified to introduce a reactive

group, such as a maleimide, and then conjugated to the drug–

linker containing an appropriate reactive handle (e.g. a thiol) [92].

Such a strategy was utilized in the case of Kadcyla1. Alternatively,

controlled reduction of existing disulfide bonds can liberate free

cysteine residues on the antibody, which then react with a mal-

eimide attached to the drug–linker. This approach, used in the

preparation of Adcetris1, takes advantage of the reducible disul-

fide bonds of IgG antibodies in which controlled conditions

enable reduction of only interchain disulfide bonds while intra-

chain disulfides remain unaffected, thus minimizing major struc-

tural disruptions to the antibody [19].

The random conjugation processes described above produce

heterogeneous mixtures of conjugated species with variable

DARs. Adding to the complexity, the site of conjugation could

be different for each ADC species containing even only one drug.

When lysines are used for conjugation, heterogeneity in overall

charge can impact solubility, stability and PK [93]. Therefore, the

clinical success of an ADC produced by random conjugation

depends on robust manufacturing processes that provide

the ability to monitor, control and purify the heterogeneous
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products. Several organizations have developed expertise in this

area to overcome the process development and manufacturing

challenges associated with ADC commercialization [94].

Site-specific conjugation

Despite the success of Adcetris1 and Kadcyla1, considerable

enthusiasm for the next generation of ADCs has focused on the

development of homogeneous products derived via site-specific

conjugation. Currently, three strategies are at the forefront: inser-

tion of cysteine residues in the antibody sequence by mutation or

insertion, insertion of an unnatural amino acid with a bio-ortho-

gonal reactive handle, and enzymatic conjugation.

Building on early studies that explored the introduction of

surface cysteines on recombinant antibodies [95], several cysteine

engineered antibodies have been produced and tested for use in

site-specific attachment of cytotoxic drugs to yield homogeneous

ADCs [96]. Junutula et al. reported a class of THIOMAB-drug

conjugates (TDCs) prepared by taking advantage of: (i) phage

display techniques to identify ideal sites for mutation and pro-

duce antibodies with minimal aggregation issues, and (ii) meth-

ods to reduce and re-oxidize the antibody under mild conditions

to present only thiols of mutated cysteines for conjugation

[92,97]. Compared with a conventional, randomly conjugated

ADC, the analogous TDC displayed minimal heterogeneity with

similar in vivo activity, improved PK and a superior therapeutic

index. Moreover, McDonagh et al. engineered antibodies in

which interchain cysteines were replaced with serines to reduce

the number of potential conjugation sites, yielding ADCs with

defined DARs (two or four drugs per antibody) and attachment

sites [98]. Broad application of this approach to future ADCs will

depend on further studies to evaluate the effect of these mutations

on the overall stability and biological function of the engineered

antibody.

Encouraged by studies with cysteine engineered antibodies,

several investigators reasoned that the site and stoichiometry of

conjugation could be controlled by inserting unnatural amino

acids with orthogonal reactivity relative to the 20 natural amino

acids. Axup et al. genetically engineered an orthogonal amber

suppressor tRNA/aminoacyl-tRNA synthetase pair to insert site-

specifically p-acetylphenylalanine (pAcPhe) in recombinantly

expressed antibodies [99]. As a test case, pAcPhe was introduced

at one of several positions in the constant region of trastuzumab

(anti-Her2). These mutants were then conjugated to an alkoxy-

amine auristatin derivative via formation of a stable oxime bond.

The resulting chemically homogeneous ADCs demonstrated

improved PK compared with nonspecifically conjugated ADCs

and were highly efficacious in a Her2-positive human tumor

xenograft model. In addition to pAcPhe, other unnatural amino

acids are being explored through the use of appropriate tRNA–

aminoacyl-tRNA synthetase pairs [100]. Recently, in vitro transcrip-

tion and translation processes have also been developed and

optimized to insert unnatural amino acids in antibodies for site-

specific conjugation [101].

In addition to inserting unnatural amino acids into mAb

sequences, chemoenzymatic approaches have been explored to

generate bio-orthogonal reactive groups for selective conjugation.

Bertozzi and co-workers utilized formylglycine-generating enzyme

(FGE), which recognizes a CXPXR sequence and converts a

cysteine residue to formylglycine to produce antibodies with
aldehyde tags [102,103]. The reactive aldehyde functionality

can then undergo conjugation to the drug–linker via oxime

chemistry or a Pictet–Spengler reaction [104].

Harnessing enzymatic post-translational modification processes

for site-specific labeling of proteins is a recently reviewed approach

for the preparation of homogenous ADCs [105]. Bacterial trans-

glutaminase (BTG) catalyzes the ligation of glutamine side chains

with the primary e-amine of lysine residues, resulting in a stable

isopeptide bond. Jegar et al. exploited BTG to load four chelates on

a deglycosylated antibody with an N297Q mutation in a site-

specific manner [106]. Recently, Strop et al. conducted BTG-

assisted conjugations by inserting LLQG sequences at different

sites on an antibody [107]. These studies clearly demonstrated that

the site of conjugation has a significant impact on the stability and

PK of the ADC. Another enzyme, sortase A (SrtA), catalyzes hydro-

lysis of the threonine–glycine bond in a LPXTG motif to form a

new peptide bond between the exposed C-terminus of threonine

and an N-terminal glycine motif [108].

Next-generation ADCs
Key clinical assets
The nearly 30 ADCs currently in clinical development have been

reviewed in detail elsewhere [109], and representative examples of

the most advanced agents are summarized in Table 3. In addition

to the FDA-approved ADCs discussed in preceding sections, several

compounds are in late-stage clinical testing for both hematological

and solid tumor indications. Despite the withdrawal of Mylotarg1

from the market in 2010, promising results from ongoing clinical

studies have shown that when combined with chemotherapy

Mylotarg1 increased overall survival in patients with newly diag-

nosed AML compared to those treated with chemotherapy alone

[110]. Inotuzumab ozogamicin, which uses the same calicheami-

cin payload and cleavable hydrazone linker found in Mylotarg1,

recently failed to demonstrate improved survival in a phase III

study for patients with refractory aggressive NHL (Pfizer Inc. press

release; May 20, 2013). No unexpected safety concerns were iden-

tified, however, and phase III studies continue for acute lympho-

blastic leukemia (ALL) patients.

The vast majority of remaining ADCs in clinical development

use either auristatin [monomethyl auristatin E (MMAE) or MMAF]

or maytansinoid (DM1 or DM4) payloads, both potent inhibitors

of tubulin polymerization. Several MMAE conjugates with clea-

vable linkers are currently under evaluation in phase II studies for

various indications based on the target antigen. In general, these

agents were well tolerated in phase I trials with toxicities consis-

tent with the known mechanism of action for the auristatins (e.g.

neutropenia or neuropathy) [22,111]. SAR3419, an anti-CD19

DM4 conjugate with a cleavable disulfide linker, demonstrated a

dose-limiting toxicity (DLT) of reversible severely blurred vision in

a phase I study for refractory B cell NHL, but was well tolerated on a

modified dosing schedule [112]. Recently advanced to phase II

studies for colorectal cancer (CRC), labetuzumab-SN-38 employs a

cathepsin B-cleavable dipeptide linker and SN-38, the active meta-

bolite of the clinically used anticancer agent irinotecan, as a

payload. Initial phase I data indicated that labetuzumab-SN-38

was generally safe and well tolerated at effective clinical doses

[113]. Lorvotuzumab mertansine utilizes a maytansinoid payload

(DM1) and a disulfide linker to target CD56. No serious DLTs or
www.drugdiscoverytoday.com 877

http://press.pfizer.com/press-release/pfizer-discontinues-phase-3-study-inotuzumab-ozogamicin-relapsed-or-refractory-aggress
http://press.pfizer.com/press-release/pfizer-discontinues-phase-3-study-inotuzumab-ozogamicin-relapsed-or-refractory-aggress


REVIEWS Drug Discovery Today � Volume 19, Number 7 � July 2014

TABLE 3

Representative ADCs undergoing clinical evaluationa

Agent Sponsor (licensee) Status Indication Antigen Cytotoxin Linker

AdcetrisW (brentuximab

vedotin, SGN-35)

Seattle Genetics

(Millennium)

Launched HL, ALCL CD30 MMAE Cleavable, Val-Cit

KadcylaW (ado-trastuzumab

emtansine, T-DM1)

Roche-Genentech

(ImmunoGen)

Launched Her2+ metastatic

breast cancer

HER2 DM1 Non-cleavable, thioether

MylotargW (gemtuzumab
ozogamicin)

Pfizer (UCB) Withdrawn AML CD33 Calicheamicin Cleavable, hydrazone
(Ac-But acid)

Inotuzumab ozogamicin

(CMC-544)

Pfizer (UCB) Ph III ALL, NHL CD22 Calicheamicin Cleavable, hydrazone

(Ac-But acid)

RG-7596 Roche-Genentech Ph II DLBCL, NHL CD79b MMAE Cleavable, Val-Cit

Glembatumumab
vedotin CDX-011)

Celldex (Seattle
Genetics)

Ph II Advanced breast
cancer, melanoma

GPNMB MMAE Cleavable, Val-Cit

PSMA-ADC Progenics (Seattle

Genetics)

Ph II HRPC PSMA MMAE Cleavable, Val-Cit

SAR3419 Sanofi (ImmunoGen) Ph II Hematologic tumors CD19 DM4 Cleavable, disulfide

Labetuzumab-SN-38
(IMUU-130)

Immunomedics Ph II Metastatic CRC CEACAM5 SN-38 Cleavable, Phe-Lys

Lorvotuzumab mertansine

(IMGN901)

ImmunoGen Ph I/II MM, solid tumors CD56 DM1 Cleavable, disulfide

Milatuzumab-DOX

(IMMU-110)

Immunomedics Ph I/II MM CD74 Doxorubicin Cleavable, hydrazone

BT-062 Biotest AG
(ImmunoGen)

Ph I MM CD138 DM4 Cleavable, disulfide

BAY-94-9343 Bayer Schering

(ImmunoGen)

Ph I Solid tumors Mesothelin DM4 Cleavable, disulfide

ASG-5ME Astellas (Seattle
Genetics)

Ph I Solid tumors AGS-5 MMAE Cleavable, Val-Cit

SGN-75 Seattle Genetics Ph I NHL, RCC CD70 MMAF Non-cleavable, MC

IMGN529 ImmunoGen Ph I Hematologic tumors CD37 DM1 Non-cleavable, thioether

SAR-566658 Sanofi (ImmunoGen) Ph I Solid tumors DS6 DM4 Cleavable, disulfide

a Abbreviations: CEACAM5, carcinoembryonic antigen cell adhesion molecule 5; HRPC: hormone refractory prostate cancer; MC: maleimidocaproyl; RCC: renal cell carcinoma; SN-38, 7-

ethyl-10-hydroxycamptothecin.
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drug-related adverse events were reported in early-phase multiple

myeloma (MM) studies [114].

Although the modest potency of doxorubicin payloads limited

the efficacy of early ADCs (BR96-DOX), milatuzumab-DOX targets

CD74, an antigen with unique internalization and surface re-

expression, and is currently in phase I/II trials based on encoura-

ging preclinical efficacy in hematopoietic cancer xenograft models

[52]. Select agents in phase I trials include ADCs containing DM1

or DM4 cytotoxic drugs under evaluation by ImmunoGen, and

several ADCs with MMAE or MMAF developed by Seattle Genetics,

each targeting a different antigen across a variety of tumor indica-

tions. Available data for these and other phase I agents generally

provide initial evidence of efficacy and tolerability. Similar to

SAR3419 (anti-CD19 DM4 conjugate), the DM4-based anti-

mesothelin conjugate BAY-94-9343 has also been reported to

induce Grade 2 and 4 ocular toxicity [115].

ADC PK
ADCs typically retain the PK properties of the antibody compo-

nent, as opposed to the appended drug, and thus exhibit relatively

low clearance and long half lives. Compared with the unconju-

gated antibody, ADCs can exhibit somewhat higher clearance due
878 www.drugdiscoverytoday.com
to introduction of an additional metabolic pathway (i.e. cleavage

of the drug from the antibody). In addition, ADCs with higher

DARs tend to clear faster than those with lower DARs [116].

Variable DARs and attachment sites, a consequence of current

random conjugation methods, result in heterogeneous ADCs with

PK parameters that can vary substantially compared to the uncon-

jugated antibody [117]. Each ADC component, along with their

respective metabolites, can potentially impact efficacy, safety and

tolerability [118]. Both the type of linker used and the site of

conjugation can influence the extent to which the drug is prema-

turely released from the antibody. Deconjugation of the payload

from the antibody can result in ADCs with lower DARs, reduced

efficacy and potentially increased toxicity owing to release of a

highly potent cytotoxic drug in systemic circulation.

The PK parameters of Adcetris1 and Kadcyla1 were evaluated in

mouse, rat and monkey in preclinical toxicity studies. Overall, these

ADCs demonstrated similar PK properties, albeit with a few differ-

ences in mouse and monkey. The t1/2 of Adcetris1 in mouse, rat and

monkey was 14, 10 and 2 days, respectively. The rapid clearance of

Adcetris1 in monkeys as compared with mouse or rat was hypothe-

sized to result from nontherapeutic antibodies, target-mediated

disposition and other factors [119]. In the case of Kadcyla1, the
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t1/2 in mouse, rat and monkey was 5.7, 8.3 and 11.6 days, respec-

tively [120,121]. In humans, the PK characteristics of these two

conjugates were similar, with a t1/2 ranging from 3.5 to 5 days

[22,24]. Of note, the t1/2 of an ADC is often significantly shorter

in humans compared with other species. The optimal t1/2 for an ADC

remains to be determined, but the clinical success of Adcetris1 and

Kadcyla1 indicate that the range of 3–4 days is appropriate.

The long t1/2 typical of ADCs and mAbs results from FcRn

recycling [122]. In this process, antigen-independent internaliza-

tion by endothelial cells is followed by FcRn binding and then

FcRn-mediated return to the bloodstream. FcRn recycling essen-

tially protects ADCs from catabolism; however, diversion of FcRn-

bound ADCs to the lysosome can increase the risk of off-target

toxicities. Although the factors that influence this process are

poorly understood, the drug, linker, antibody and antigen can

each affect FcRn-mediated ADC trafficking [123]. Another

mechanism of off-target toxicity involves soluble cell-surface man-

nose receptors (MRs), which interact with agalactosylated glycans

on the antibody Fc domain [124]. Cell-surface MRs can internalize,

effectively delivering the ADC to the endosome and lysosome

compartments where the potent cytotoxic drug is released. Impor-

tantly, locations of off-target ADC activities reportedly coincide

with cell-surface MR locations. The shedding of antigen from the

tumor cell surface into circulation may also increase the risk of

toxicity. Binding of an ADC to shed antigen can, in some cases,

lead to higher ADC clearance and impaired tumor localization as

well as immune complex formation and accumulation in the

kidney [125].

To determine the effect of linker stability on PK and efficacy, the

noncleavable thioether linker of Kadcyla1 was compared to the

cleavable disulfide linker of a T-SPP-DM1 conjugate [121]. The

nonreducible thioether-linked Kadcyla1 demonstrated superior

PK with greater plasma exposure (area under the curve) and

increased maytansinoid tumor concentration. The disulfide-

linked ADC demonstrated higher plasma clearance owing to the

presence of the metabolically labile linker. Despite the difference

in PK, both conjugates had similar in vivo efficacy. It was hypothe-

sized that the drug released from the disulfide-linked T-SPP-DM1

conjugate would benefit from the bystander killing effect, whereas

Kadcyla1 ultimately liberates a maytansinoid appended to a

charged lysine residue, which limits diffusion to neighboring

tumor cells. Taken together, these results illustrate how minor

structural changes can profoundly impact ADC PK and efficacy.

In addition to the type of linker used to join the drug and

antibody, the conjugation site on the antibody has been shown to
influence stability and, therefore, PK. A recent study examined the

stability of MMAE conjugated to Her2 via a maleimide at various

site-specifically engineered cysteines [126]. Highly solvent acces-

sible conjugation sites were found to be labile, undergoing mal-

eimide exchange with reactive thiols in the plasma, such as

glutathione, albumin or free cysteine. At less accessible sites,

the succinimide ring of the linker underwent hydrolysis, which

served to protect the linker from maleimide exchange and resulted

in enhanced stability and efficacy. In a separate study, the stability

of monomethyl auristatin D (MMAD) conjugated to an anti-M1S1

antibody was examined using BTG to introduce the drug payload

site specifically at either the heavy or light chain [107]. The

conjugation site was found to influence stability and PK, with

ADCs appended to the heavy chain demonstrating a higher rate of

drug loss in rats via proteolysis of the valine–citrulline linker.

Interestingly, these results were species specific since both con-

jugates demonstrated comparable stability in mice, which also

serves to highlight the potential pitfall of performing safety and

efficacy studies in different species.

Concluding remarks and future directions
Despite complexities in designing ADCs, the promise of this

therapeutic class has generated intense interest for decades. A

robust clinical pipeline and the recent FDA approvals of Adcetris1

and Kadcyla1 suggest that the potential benefit of ADCs may

finally be realized. Evolving clinical data will continue to drive

technological advancements in the field. Current methods for

preclinical lead selection typically rely on systematic in vitro

evaluation of a matrix of various mAbs, linkers and cytotoxic

payloads. Whether in vitro models are sufficient to predict response

remains to be seen; until further understanding of ADCs is rea-

lized, early in vivo studies might be crucial. Progress in site-specific

conjugation modalities, optimization of linkers with balanced

stability and identification of novel, potent cytotoxic agents

should pave the way for greater insight into the contribution of

these various factors to ADC efficacy, PK and safety. Challenges in

target tumor selection will be addressed as the roles of antigen

expression, heterogeneity and internalization rate are further

elucidated. Guiding principles for the selection of an ideal anti-

body Fc format are, as of yet, lacking and prompt validation of

current assumptions regarding antibody-dependent properties,

such as specificity and immune effector functions. Ongoing efforts

to address these issues will continue to broaden the impact of

ADCs as targeted therapeutics for the treatment of cancer and

potentially other diseases.
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