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The early promise of boron neutron capture therapy as a method for the treatment of cancer has been

inhibited by the inherent toxicity associated with therapeutically useful doses of 10B-containing

pharmacophores, the need for target-tissue specificity and the challenges imposed by biological barriers.

Although developments in the synthetic chemistry of polyhedral boranes have addressed issues of

toxicity to a considerable extent, the optimisation of the transport and the delivery of boronated agents

to the site of action – the subject of this review – is a challenge that is addressed by the development of

innovative formulation strategies.
Shortly after the discovery of the neutron by Chadwick [1] and

following the observation of Fermi et al. [2] that some nuclides

(such as 10B and 6Li) are capable of absorbing thermal neutrons,

Locher [3] laid the foundations for the development of neutron

capture therapy (NCT) by proposing the use of ‘strong neutron

absorbers into the regions where it is desired to liberate ionisation

energy’. For use in NCT the nuclide must offer a high ‘neutron-

capture cross section’ (sth); a quantity that provides a measure of

the probability of capturing a neutron. 157Gd, 113Cd, 3He and 10B

all exhibit large sth values [4].

Boron neutron capture therapy
Of the nuclides that are potentially useful in NCT, 10B not only

offers a good compromise between toxicity and stability but also a

chemistry that is highly versatile and well established [5].

Boron neutron capture therapy (BNCT) is a two-step chemo-

radiotherapeutic technique (Fig. 1) that involves the selective

delivery of 10B-rich agents to tumours and their subsequent irra-

diation with low-energy neutrons, which induces a nuclear fission

reaction that causes the selective destruction of the targeted cells.
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Energetic alpha particles, produced by the interaction of 10B

with neutrons, have a high linear energy transfer (number of

ionisations per unit distance), low oxygen enhancement ratio (a

measure of the proportion of radiation doses that are needed to

affect the same rate of cell survival under hypoxic or oxic condi-

tions) and high relative biological effectiveness (the relative

amount of damage that a fixed amount of ionising radiation of

a given type can inflict on biological tissues). These particles are

lethal, but – because of their size, energy and short path lengths

(4.5–10 mm) – the effect is confined within the host cell [6].

Inevitably, capture reactions also involve 1H and 14N, but the

sth for these nuclei are too small to be of concern [4].

Applications and strategies
Although there has been interest in the application of BNCT for

the treatment of malignant melanomas, head and neck cancers

and hepatomas [7], most studies have focused on the treatment of

brain tumours, largely represented by glioblastoma multiforme

(GBM) [8]. GBM is difficult to treat surgically and is associated with

metastases to other organ sites. In contrast to irradiation with g-

photons and X-rays, BNCT offers the promise of non-repairable

sublethal damage (SLD) and potential lethal damage (PLD) [9],

which rationalises the suggested use for the treatment of tumours,
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FIGURE 1

BNCT steps. The selective delivery of 10B-containing drugs to tumour cells is followed by irradiation with slow neutrons (1n), leading to tissue repair.
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such as GBM, that are characterised by powerful DNA repair

mechanisms [10].

Molecular design requirements
For potential applications in BNCT, a therapeutic agent [11,12]

must: possess low toxicity (especially in the case of systemically

administered agents); exhibit good tumour-cell selectivity; persist

intracellularly at constant concentrations during the course of

neutron radiation; be deliverable at >109 10B atoms per cell; be

characterised by tumour:normal tissue and tumour:blood ratios

higher than 3; and have the capacity to reach the target site

through the blood stream by penetrating biological barriers,

such as the blood–brain barrier (BBB). Early molecular-design

approaches were guided by the observation that the BBB is more

permeable in the diseased state than it is in the healthy state, but

therapeutic strategies that emerged from these approaches did not

prove successful, mainly because isolated clusters of tumour cells,

protected by the normal BBB, retain the potential to become the

foci for tumour recurrence. The multitude of performance

demands that 10B-containing drugs need to satisfy before they

can be used in clinical trials are reflected by the number of 10B

compounds that have reached this stage [13,14]: 4-dihydroxybor-

ylphenylalanine (BPA) [15] and sodium mercaptoundecahydrodo-

decaborate (BSH) [16] (Fig. 2).

Primary among these demands is the delivery of therapeutic

quantities of 10B at the site of action. It has been calculated that, if

a neutron fluence of 1012 neutrons/cm2 is to be employed, the
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FIGURE 2

Structures of 4-dihydroxyborylphenylalanine (BPA) and

mercaptoundecahydrododecaborate (BSH) anion.
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boronated agent needs to be maintained at �30 mg 10B/g of tumour

throughout the period of irradiation [17]. A commonly employed

strategy for achieving such concentrations involves the design of

therapeutic agents that incorporate polyhedral borane moieties

[18]. Among these, the carboranes [19] (neutral lipophilic icosa-

hedral dicarba-closo-dodecaboranes, C2B10H12; Fig. 3) are of parti-

cular interest, not only because of their high 10B content, good

catabolic stability and low toxicity [20] but also because they are

amenable to chemical functionalisation [21,22].

Dosage form design
The major limitation in the early clinical application of BNCT has

been the lack of availability of low-toxicity 10B-containing com-

pounds that can be selectively transported to the target tissue at

the concentration level necessary to meet the therapeutic objec-

tive. Molecular-level structural modifications attempted to date

have not been sufficient to address all these challenges and, as a

consequence, much effort has been directed toward the develop-

ment of complementary formulation strategies. Among these,

emulsions, liposomes, dendrimers and, more recently, carbon

nanotubes have received considerable attention.

Emulsions
Suzuki et al. [23] compared the pharmacokinetics of BSH, as a

potential agent for the treatment of hepatomas, following intra-

arterial administration in a biodegradable starch microsphere

(DSM) formulation with those of an emulsion of BSH in lipiodol.

The lipiodol-based delivery system exhibited high selectivity, effect-

ing a tumour:liver boron concentration ratio >4 (a peak concentra-

tion ratio of �14 was observed at 6 h from administration). In a

separate effort [24], the same group exploited the propensity of
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FIGURE 3

Structures of ortho-, meta- and para-carboranes.
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FIGURE 4

Schematic representation of liposomes showing encapsulation (left) and

incorporation (right) of boron.
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iodised poppy-seed oil (IPSO) mix emulsions to deposit selectively

in hepatocellular carcinoma (HCC) cells as a more efficient means of

delivering 10B to the liver. The employment of BSH-entrapped

water-in-oil-in-water (WOW) emulsions is reported [25,26] to effect

HCC 10B concentration ratios that are even higher than those

associated with IPSO mix emulsions. A comparative study of the

relative merits of emulsions as compared with other systems for the

delivery of boron has been presented by Yanagie et al. [27].

Liposomes
Liposomes have the capacity to accommodate relatively large

quantities of boron [28]. Two main strategies have evolved for

the loading of liposomal systems with polyhedral boranes: encap-

sulation and incorporation (Fig. 4).

Encapsulation refers to the containment of boronated drugs

within the internal cavity of liposomes, whereas incorporation is

the integration of the polyhedral boranes within the bilayer

structure. Incorporation allows the chemical binding of boranes

to constituents of the bilayer (lipids or cholesterol) as their nido- or

closo-congeners. The adopted formulation strategy is dictated by

the complementarity of the respective physicochemical character-

istics of the lipids and the active ingredient.

Encapsulation

Yanagie et al. [29] were the first to employ liposomes for the

delivery of encapsulated boronated compounds in vitro. Selective

delivery of the therapeutic agent was achieved by the encapsula-

tion of BSH into immuno-liposomes that had been conjugated

to monoclonal antibodies (mAbs) specific to carcinoembryonic

antigen (CEA). In vitro experiments showed that thermal-neutron

irradiation at 5 � 1012 neutrons/cm2 inhibited tumour-cell

growth, whereas in vivo experiments at 2 � 1012 neutrons/cm2

demonstrated the capacity to suppress tumour growth. The sig-

nificance of this work becomes apparent when the unsuccessful

attempts to deliver boron by direct conjugation to antibodies are

considered [30,31].

Hawthorne [32] encapsulated a variety of hydrolytically stable

polyhedral borane anions into unilamellar liposomes and the

formulation was tested via parenteral administration to tumour-

bearing mice. Although the polyhedral anions did not exhibit any
selectivity toward tumour cells, the employed liposome formula-

tions were shown to be capable of effecting the selective delivery of

borane anions to tumours (peak boron concentration = 40 mg 10B/g

tumour tissue; tumour:blood boron ratio = 5). Consistent with

the performance demands of a therapeutically valuable colloidal

delivery system, the encapsulation of Na3[B20H17NH3] in liposomes

of 5% PEG-2000-distearoyl phosphatidylethanolamine was seen

to extend circulation time, as witnessed by the continuous accu-

mulation of 10B in the tumour over 48 hours (to a maximum of

47 mg 10B/g tumour) [33].

Other strategies toward the selective delivery of boron to

tumour cells have included the use of cationic liposomes, the

conjugation of liposomes to a ligand targeting the folate receptor

(FR), transferring (TF) receptor or epidermal growth factor receptor

(EGFR) [32–42].

Rationalised in terms of potentially favourable electrostatic

interactions with the negatively charged outer leaflet of mamma-

lian plasma membranes, Ristori et al. [34] co-formulated 10B-com-

pounds with cationic liposomes. In experiments involving the use

of DHD/K12/TRb rat colon carcinoma or B16-F10 murine mela-

noma cells to respectively induce liver or lung metastases, these

cationic liposomes effected a greater than 30-fold increase in the

cellular concentrations of 10B relative to that achieved by BPA

alone.

Pan et al. [35]demonstrated that FR-targeted liposomes afford

an almost tenfold increase in the accumulation of 10B in cancer-

ous tissue. In vitro experiments involving human KB squamous

epithelial cancer cells, which present an overexpression of FR,

demonstrated an order-of-magnitude increase in cellular boron

uptake as compared with the control (1584 mg/109 cells vs.

154 mg/109 cells). However, the encapsulation efficiency of such

a system is low (6–15%). The concept of FR-targeting liposomes

has also been exploited by Maruyama et al. [36] in the formula-

tion of Na2BSH with FR-PEG liposomes designed to reduce

uptake by the reticuloendothelial system (RES). This approach

offered an improvement in residence time and the consequent

amplification in accumulation of 10B in tumour cells [36]: at

72 hours post injection (dose = 35 mg 10B/kg), the formulation

effected a concentration of 30 mg 10B/g tumour and a tumour:-

plasma ratio of 6.

Doi et al. [37] illustrated the superior selectivity of TF-PEG

liposomal carriers of BSH as compared with PEG-liposomes or

BSH alone.

The use of EGFR-targeted liposomes has been explored by,

among others, Kullberg et al. [38], who reported good 10B uptake

by glioma cells (6 mg/g of cells) in an in vitro experiment involving

a water-soluble boronated acridine encapsulated in EGF-PEG lipo-

somes. More recently, Tomizawa et al. [39] demonstrated the

specific delivery of BSH to glioma cells by means of immunolipo-

somes. Specificity was achieved by the EGFRvIII functionalisation

of liposomes; EGFRvIII is overexpressed in GBM (up to 57%), but

undetectable in normal brain [38].

Incorporation

Hawthorne and colleagues [40,41] were the first to exploit the

intercalation of nido-carborane into the bilayer of liposomes

following functionalisation with a single hydrocarbon chain

(CL; Fig. 5). In vivo studies of distearoylphosphatidylcholine

(DSPC) and cholesterol-intercalated CL showed a maximal tumour
www.drugdiscoverytoday.com 155



REVIEWS Drug Discovery Today � Volume 17, Numbers 3/4 � February 2012

_H

_
O

O

O

H

CL

+ K

+ Na

DCL
Drug Discovery Today 

FIGURE 5

Single-(CL) [41] and double-tailed nido-carborane lipids (DCL) [42].
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FIGURE 7

Structures of cholesterol and carboranyl cholesterol mimic (CCM).
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concentration of 35 mg 10B/g tumour and a tumour:blood ratio of

8. The concept has been extended by Nakamura et al. [42] to

double-tailed nido-carborane lipid (DCL; Fig. 5).

DCL is reported to form vesicles that exhibit good integrity in

bovine blood samples [42]: injections at 7.2 mg 10B/kg body

weight to tumour-bearing mice effected a concentration of

22 mg 10B/g tumour and extended survival rates following BNCT

[43]. PEGylated congeners of these vesicles afforded increased

circulation times and enhanced tumour-site accumulations,

which was enhanced further following conjugation with TF. BNCT

experiments involving the administration of TF-PEG-DCL lipo-

somes to male BALB/c mice (37 minutes irradiation) have shown

longer average survival rates (31 days, with one mouse surviving

for 52 days after BNCT vs. 21 days) [28].

By drawing analogies with the chirality of phospholipids (such

as DSPC), Nakamura et al. [44] and Lee et al. [45] designed BSH-

functionalised lipids (Fig. 6) of relatively low toxicity.

The combination of DSPC and PEG with the lipid BSH-L1, or with

BSH-L2, followed by extrusion through a 100 nm pore-diameter

filter yielded nanovesicles. In vivo BNCT regimes (20 mg 10B/kg

body weight; 30 min irradiation at 0.9–1.4 � 1012 neutrons/cm2)

involving tumour-bearing mice have shown that over a period

of two weeks the tumour growth rate in mice treated with
10B-liposomes was a fifth of the controls [28].
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FIGURE 6

Structures of BSH-functionalised lipids.

156 www.drugdiscoverytoday.com
Another strategy toward the incorporation of increased

amounts of 10B into liposomes involves the attachment of carbor-

anes and BSH to cholesterol via alkyl chains [28,46].

Thirumamagal et al. [47] designed a molecule that was claimed

to be capable of interacting with liposomes in a cholesterol-like

manner (Fig. 7).

Jonnalagadda et al. [48] synthesised several a-carboranyl-a-

acyloxy-amides, and also cholesterol and bishexadecyl-oxygly-

ceryl carboranes that, on preliminary evaluation, were shown to

be non-cytotoxic, even at concentrations as high as 50 mM.

Dendrimers
Owing to their controllable architecture, monodispersivity and

capacity to accommodate large numbers of boron atoms, dendritic

BNCT agents, especially those involving conjugation with mAbs or

EGFs, have received considerable attention.

Barth et al. [49] has shown that mAb-conjugated poly-amidoa-

mine (PAMAM) ‘starburst’ dendrimers containing isocyanato

polyhedral borane (Na(CH3)3NB10H8NCO) exhibit preferential

accumulation in RES organs when tested in vivo against murine

B16 melanoma. The concept of functionalisation with mAbs was

also exploited by Wu et al. [50] who attached cetuximab to heavily

boronated ‘starburst’ dendrimers. Because cetuximab is an EGF

inhibitor it offers a further advantage in that it delays cell pro-

liferation, which together with the five-generation dendrimer

structure must be responsible for the high level of boron accumu-

lation (92.3 mg 10B/g of tumour) observed.

The linking of boronated starburst dendrimer to EGF was first

attempted by Capala et al. [51] who synthesised molecular struc-

tures each containing more than 1000 10B atoms, but these den-

drimers exhibited little affinity for EGFRs. Barth et al. [52] were the

first to publish in vivo data indicating the significant therapeutic

benefit associated with EGF-boronated dendrimers, either alone or

in combination with BPA, as demonstrated by the increase in the

life span of glioma-bearing rats [53]. Backer et al. [54] prepared

boronated dendrimers of five-generation PAMAM that were con-

jugated with vascular EGF (VEGF) and possessed 1050–1100 10B

atoms per dendrimer. In vitro studies using HEK293 cells, that had

been engineered to express 2.5 � 106 VEGFR-2 per cell, showed

negligible cytotoxicity and provided evidence for the uptake of

dendrimers via a VEGF receptor-mediated mechanism. Although

EGF targeting vehicles cannot act as stand-alone boron delivery

agents (because of the heterogeneity of receptor expression in

brain tumours) they can prove of value in therapies involving a

combination of drugs [55].



Drug Discovery Today � Volume 17, Numbers 3/4 � February 2012 REVIEWS

R

N3

R

N

H

SWCNT

H
-

Na+

1. SWCN Ts, so lven t

2. NaOH, EtOH

= BH = C R = Me, Ph

Drug Discovery Today 

FIGURE 8

Functionalisation of SWCNTs with carboranyl clusters.
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Graphite-based systems
Despite significant unknowns regarding tolerance and toxicity

[56] and the absence of solubility or dispersivity [57–59], carbon

nanotubes have received considerable attention because of their

dual capability to penetrate biological barriers and to become

internalised into the nucleus [12,56,60].

The relatively high surface area, and hence loading capacity,

and the chemical and thermal stabilities of single-walled carbon

nanotubes (SWCNTs; diameter 0.4–2.0 nm) [56,58] qualify them

as promising BBB-crossing vehicles.

Yinghuai et al. [61] functionalised SWCNT with closo-carboranes

by immobilising them onto the outer walls of the nanotubes.

Subsequent degradation of the closo-carborane to its nido-form

(Fig. 8), rendered the structures ionic, and hence water soluble.

An in vivo investigation of the distribution of boron in tumour-

bearing mice showed a long retention time (two days), consider-

able specificity toward tumour cells (concentrations as high as

28 mg 10B/g tumour cells) and maximal tumour:blood ratios of 6

[61].

Additional to Yinghuai’s approach for effecting solubility, two

main strategies have evolved toward the prevention of the bund-

ling of SWCNTs in liquid media: surface chemical functionalisa-

tion and the physisorption of tensioactive agents [62]. Surface

chemical modification demands the disruption of the p cloud

through re-hybridisation of some of the carbon atoms forming the

SWCNTs, which however impacts upon the stability of these

materials. The physisorption of tensioactive agents – which

involves the use of surfactants or polymers to stabilise SWCNTs

in aqueous media – is regarded as the method of choice

for achieving dispersion, as is exemplified by the work of Yanno-

poulos et al. [62] who immobilised o-carborane on stable aqueous

dispersions of lyso-phosphatidylcholine-functionalised SWCNTs.

Despite the lower toxicity of multi-walled carbon nanotubes

(MWCNTs; diameter of 1.4–100 nm) [56,58] relative to SWCNTs,

such materials have received little attention. The need for further

investigations can be rationalised in terms of the findings of

Montiro-Riviere et al. [63] who, having studied the capability of

MWCNTs to enter cells, reported their highly preferential localisa-

tion into the cytoplasm and also the direct proportionality of the

relationships between sample concentration or exposure time and

concentration in the cytoplasm.

Analogous to the SWCNTs, carbon nanoparticles have recently

been investigated as possible delivery vessels of 10B. Hwang et al.

[64], who examined the FR-targeting of carbon nanoparticles
containing 10B to HeLa cancer cells, reported that upon thermal

neutron irradiation these particles induced acute cell death to the

extent of 52% and also suppressed the proliferation capacity of

HeLa cells that had survived.

Nanoparticles
In addition to their potential for use as tools for the controlled

release of actives, nanoparticles [65] are highly stable in biolo-

gical fluids, including blood. Studies [66,67] involving the use of

radiolabelled drugs have revealed that appropriately designed

nanoparticles are capable of overcoming the BBB and of depos-

iting their therapeutic content in the brain. Reports claim that

such structures afford up to a 10-fold increase in concentration of

drug in the brain, a lessened burst effect, slow clearance and

improved half-life [66,67]. Mandal et al. [68] tested gold nano-

particles that had been multi-functionalised with BPA, folic acid

and fluorescein isothiocyanate against three cancer cell lines that

are known to overexpress FR, and observed tumour:normal cell

uptake ratios of 5 in the perinuclear region of cancer cells. Most

promisingly, a method for the low-temperature, solution synth-

esis of surface-functionalised boron nanoparticles is now

available [69]. In this method, the reduction of BBr3 with

sodium naphthalenide followed by the reaction of the resulting

bromide-capped intermediate with octanol yields organo-

capped boron nanoparticles.

Concluding remarks
Research activities for BNCT encompass not only the improve-

ment of neutron beam characteristics and the design, synthesis

and evaluation of more-selective tumour-targeting agents but also

the optimisation of the transport and delivery of boronated phar-

macophores. The relatively high costs associated with the con-

struction of the neutron beam appear to have been the main factor

inhibiting the evolution of a technique that offers the promise of

significant therapeutic benefits, but the very considerable

improvements in the efficiency and specificity of the delivery of

boronated agents could provide the driving force that will bring

the technique into the main stream of cancer treatments. Just as

the advent of polyhedral-borane chemistry has addressed the

demands of molecular design, developments in formulation stra-

tegies are appearing to address the challenges presented by the

demands of the site-specific delivery of therapeutically useful

quantities of these agents, but this still remains to be tested in

the clinic.
www.drugdiscoverytoday.com 157
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