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Computational functional group
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Computational functional group mapping (cFGM) is emerging as a high-impact complement to existing

widely used experimental and computational structure-based drug discovery methods. cFGM provides

comprehensive atomic-resolution 3D maps of the affinity of functional groups that can constitute drug-

like molecules for a given target, typically a protein. These 3D maps can be intuitively and interactively

visualized by medicinal chemists to rapidly design synthetically accessible ligands. Given that the maps

can inform selection of functional groups for affinity, specificity, and pharmacokinetic properties, they

are of utility for both the optimization of existing drug candidates and creating novel ones. Here, I review

recent advances in cFGM with emphasis on the unique information content in the approach that offers

the potential of broadly facilitating structure-based ligand design.
Introduction
The design of small molecules that bind with optimal specificity and

affinity to their biological targets, typically proteins, is based on the

idea of complementarity between the functional groups in a small

molecule and the binding site of the target. The complementarity

arises from fundamental physical interactions, such as hydrogen

bonds, salt bridges, and hydrophobic association. This basic intui-

tive idea suggests another one: ‘functional group mapping’ (FGM),

which is simply to make a map, for each functional group, of the

regions in the vicinity of the target surface with which that func-

tional group preferentially binds. With such a map in hand for each

functional group in their synthetic palette, medicinal chemists can

focus their efforts on designing small molecules that best match the

maps. Ideally, FGM should consider not only the target surface as

seen in an atomic-resolution crystal structure, but also inducible

pockets resulting from the combination of target flexibility and

functional group binding [1]. With such complete information, the

medicinal chemist could design the most efficacious small molecule

for a binding site on the target protein.

Experimental FGM
There have been numerous experimental and computational

approaches to FGM. One approach that can be considered FGM
E-mail address: oguvench@silcsbio.com.
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is the synthesis and testing of a series of similar drug-like mole-

cules. This approach, resulting in a structure–activity relation

(SAR), can reveal which functional groups have beneficial inter-

actions with the target. The SAR approach can be extended to

include 3D information about the drug-like molecules in the series

in a quantitative manner (3D-QSAR) [2,3]. Based on the assump-

tion that the molecules bind in the same pose, one can deduce

which functional groups at what locations interact best with what

parts of the target binding site, and this approach can be particu-

larly powerful given a known binding pose in the context of the

target [4]. The results can be used as a map to guide the creation of

new compounds with improved efficacy or to scaffold-hop to

other compounds with similar 3D placement of the relevant

functional groups [5–7]. Another FGM approach involves testing

the ability of small, simple compounds (molecular weight 100–

300 Da) to bind to a target. These compounds are sufficiently small

as to have limited internal degrees of conformational freedom, and

often correspond to a single functional group that might occur in a

drug-like molecule making them, in a sense, ‘fragments’ of drug-

like molecules. Fragments can be screened in high-concentration

bioassays with nuclear magnetic resonance (NMR)-based hit con-

firmation followed by X-ray structure determination of target–

fragment complexes to determine the binding poses of hits [8–12].

Using the known binding poses of several fragments, medicinal

chemists can synthetically link fragments together into a drug-like
1359-6446/� 2016 Elsevier Ltd. All rights reserved.
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molecule and then test this molecule for selectivity and affinity, a

process commonly referred to as ‘fragment-based drug design’

(FBDD) [13–15].

Computational FGM
The above SAR-based approaches, by their very design, combine

experimental data with computational modeling. By contrast,

target-based computational approaches have evolved in parallel

with experimental fragment-based FGM. The earliest of these

purely cFGM approaches date back to the earliest days of com-

puter-aided drug design (CADD) and, therefore, the following is

necessarily only a partial list: (i) GRID, where the interaction

energy between a probe group (e.g., methyl) and the target is

computed on a grid encompassing the binding site to give an

array of energy values that can be displayed as contour surfaces

[16]; (ii) MCSS, where multiple non-interacting fragments are

energy minimized or quenched in the presence of the target to

determine optimal binding poses [17]; (iii) FTMAP, which com-

bines a grid approach with determination of low-energy con-

formations of fragments and clustering to determine favorable

binding sites [18,19]; (iv) alchemical transformation, where the

free energy of morphing one functional group into another is

computed, either in a discrete (e.g., free energy perturbation or

thermodynamic integration) or continuous (e.g., lambda dy-

namics) manner [20–22]; (v) WaterMap, which determines the

locations and thermodynamic properties of water molecules

that solvate protein-binding sites [23]; and (vi) ligand or co-

solvent mapping simulations, which determine the locations of

fragment molecules that can occupy protein-binding sites [24–

28].

The benefits of using computational approaches are well

known: they have the potential to save time, materials, and labor.

Their main liability is also well known: the reliability of the results

depends on the accuracy of the computational model and the need

for adequate conformational sampling [29–32]. Therefore, a key

driver of computational methods development is to retain the

benefits while increasing the reliability. Much of these develop-

ments have been enabled by the steady improvement in comput-

ing hardware and algorithms [33,34] along with the maturation of

all-atom explicit-solvent force fields [31,35,36]. These develop-

ments allow for the routine modeling of systems of relevant size,

including explicit solvent, into the microsecond timescale using

molecular dynamics (MD) simulation.

cFGM with all-atom explicit-solvent MD
The application of all-atom explicit-solvent MD brings two key

improvements in reliability to cFGM. The first is the discrete

nature of molecular water, which allows for water to explicitly

compete with functional groups, to act as a bridging molecule in

enclosed spaces, and to contribute to the hydrophobic effect.

The second is that target flexibility is naturally incorporated as

the system samples thermally accessible conformations and,

therefore, inducible pockets that are not evident from analysis

of crystallographic structures. Thus, two key challenges in

cFGM and in CADD in general (solvation effects and target

flexibility) are accounted for in a physically rigorous fashion.

Reflecting this, of the cFGM approaches listed above, both (v)

and (vi) use the all-atom explicit-solvent MD framework, and
(iv) is increasingly used in this framework. The remainder of this

brief review focuses on approach (vi), because it is the closest

analog to experimental fragment-based FGM and has seen many

developments in recent years. cFGM involving all-atom explicit-

solvent MD includes co-solvent [24], ‘MixMD’ [27], Site-Identi-

fication by Ligand Competitive Saturation (‘SILCS’) [25], and

related methods [26,28]. Using a single solute, such as isopro-

panol [24], acetonitrile [27], or chlorobenzene [37], in an aque-

ous solution provides functional group maps for that particular

solute. It is also possible to use multiple fragments in the same

simulation, each representing different functional groups

[25,28,38]. This allows one to generate maps for, for example,

hydrogen bond donors, hydrogen bond acceptors, aliphatic

groups, aromatic groups, cations, and anions all from a single

simulation. A more recent development is the application of

sophisticated sampling methods to target buried or occluded

pockets [39–41].

Advantages to cFGM with all-atom explicit-solvent MD
There are three scientific advantages to cFGM using all-atom

explicit-solvent MD simulations over experimental methods.

The first is the possibility of detecting low-affinity binding regions.

Given that an MD trajectory captures not only long-lasting, but

also fleeting interactions between fragments and the target, low-

affinity binding regions, including their specific locations on the

target, are detectable. The second advantage is an outcome from

the first: the FGM for all functional groups are present for all

regions of the entire target structure. For example, while a partic-

ular region might favor a hydrogen-bond donor, analysis of the

FGMs might reveal that an aliphatic functional group can also

favorably occupy that same region, information that is of high

value to a medicinal chemist. A third is the ability to prevent

aggregation of hydrophobic fragments and fragment-induced de-

naturation of the target. Ligand aggregation and target denatur-

ation in experimental binding assays can lead to false positives or

negatives [42,43] Several different approaches have been described

for preventing target denaturation, including the use of weak

restraining potentials on the target atoms (while still retaining

e.g., full side-chain and loop flexibility) [25,44], limiting simula-

tion timescales to below the kinetic limit for denaturation [27],

and postsimulation analysis and exclusion of trajectory snapshots

in which the target has denatured [44]. A novel approach to

preventing aggregation has been described in the context of SILCS

[25]. There, an additional interaction site is added to each frag-

ment and serves to repel fragments that get within contact dis-

tance while all other interactions in the system are left

unperturbed. Therefore, cFGM can be scientifically advantageous

over experimental approaches when mapping denaturing or hy-

drophobic functional groups.

An additional benefit of cFGM in the all-atom explicit-solvent

MD framework is the easy, intuitive way in which data can be

visualized to guide small-molecule design. The simulation trajec-

tory data can be converted to 3D maps, where binding probability

p is determined as a function of x, y, z location for each point

around the entire target structure. Using a grid resolution of �1 Å

results in fine-grained maps (see [45] for a sample workflow) that

can be displayed using existing standard file formats (e.g., CCP4

[46], as used for crystallographic electron densities, or AutoDock
www.drugdiscoverytoday.com 1929
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FIGURE 1

Computational functional group mapping (cFGM) of Factor Xa using the

SILCS methodology (data available for free download at silcsbio.com). Maps

are for benzene (purple), propane (green), neutral hydrogen bond donors
(blue), neutral hydrogen bond acceptors (red), methylammonium (cyan), and

acetate (orange).

(a)

(b)
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FIGURE 2

Overlay of benzene functional group map from Fig. 1 (main text) with a

known Factor Xa ligand in its crystallographic binding pose. Contours have

been adjusted to show both (a) low-affinity and (b) high-affinity benzene
binding. The solid-purple arrow shows an area that the mapping confirms is

important for ligand binding, and the dashed-purple arrow shows an area for

possible extension of the ligand through the addition of an aromatic
functional group.
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[47], as used for docking grids). Therefore, the 3D map for each

functional group (i.e., the FGMs) can be loaded and viewed with

the crystal structure of the target (Fig. 1). Given that standard

molecular visualization programs permit interactive adjustment

of the contour level for p(x, y, z) data, the medicinal or compu-

tational chemist can adjust the contour level while rotating the

system to see all regions with some binding, or regions with

only high-affinity binding, or even unfavorable binding regions.

Notably, the experimentally determined coordinates for a

molecule bound to the target can be overlaid on the FGMs,

because the FGMs themselves are ligand independent. The

chemist can then zoom in on the area of interest and use the

visual information in a qualitative manner to either plan exten-

sions to a known molecule or design entirely new compounds

(Fig. 2).

Quantitative application
In addition to the direct, interactive, intuitive qualitative applica-

tion of 3D functional group maps, automated, quantitative appli-

cations also exist. One example is to use the maps to generate 3D

pharmacophore models [48,49]. These can then be applied using

existing standard virtual database screening tools to identify

compounds. Another example is the direct use of the maps as

scoring functions for in silico docking and pose refinement. Im-

portantly, the scoring function can be expressed in units of free

energy, DG, using the simple, theoretically exact relation

DG = �RT ln(p) [28,50]. This has the additional benefit of discrim-

inating fragment poses that are most likely to be retained upon

fragment elaboration into larger ligands because of the relation
1930 www.drugdiscoverytoday.com
between fragment-binding free energy and conservation of bind-

ing pose [51]. Notably, because the FGMs are precomputed, dock-

ing and scoring can be performed in a rapid fashion as required

for iterative ligand design. Alternatively, MD snapshots of

target-fragment complexes can be used in a much more rapidly

computed alternative to traditional alchemical transformation

[(iv) above] [52].

Concluding remarks
All-atom explicit-solvent MD cFGM approaches are becoming

increasingly better characterized and more applied [28,53–60].

This emerging cFGM methodology offers medicinal chemists an

intuitively and visually accessible tool to facilitate ligand design,

and the method can be extended to perform quantitative estimates

of relative ligand affinity. Therefore, I expect cFGM to become a

routine complement to the existing workflow of industrial medic-

inal and computational chemists.
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