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Vast resources are expended during the development of new cancer therapeutics, and selection of

optimal in vivo models should improve this process. Genetically engineered mouse models (GEMM) of

cancer have progressively improved in technical sophistication and, accurately recapitulating the

human cognate condition, have had a measureable impact on our knowledge of tumourigenesis.

However, the application of GEMMs to facilitate the development of innovative therapeutic and

diagnostic approaches has lagged behind. GEMMs that recapitulate human cancer offer an additional

opportunity to accelerate drug development, and should complement the role of the widely used

engraftment tumour models.
Over many years now there has been a poor correlation between

preclinical therapeutic findings and the eventual efficacy of these

compounds in clinical trials [1,2]. Two universal approaches have

been used in preclinical testing: cell-based in vitro systems and in

vivo animal models. Cultured cells in vitro have been used widely in

cancer biology, examination of chemotherapeutics and targeted

therapeutics; they are certainly responsible for our early progress

in cancer research. They have advantages, such as set experimental

conditions and environmental factors, and the ability to manip-

ulate almost any target relatively easily and at a low cost [2].

However, they have major drawbacks, such as the inability to

replicate the three dimensional tumour structure, the absence

of a tumour microenvironment and artificial levels of growth

factors and cytokines in cell culture media [3].

In an effort to improve the relevance of the model, cell lines

were incorporated into xenografts, in which cells are injected

subcutaneously in immunocompromised mice. Murine models

have become a main part of research in many laboratories as they

are the most accessible animal model. There are extensive reports

highlighting the advances we have made in cancer biology by

employing these systems [4,5], however, the usefulness of different

types of animal models in preclinical compound testing is a much

more disputed topic. With an increasing number of new drug
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targets and targeted agents available, more advanced ways of

testing these compounds are now being developed.

Therapeutic efficacy studies in mice have not typically

addressed important factors considered in early stage clinical trials,

such as differences in pharmacokinetics (PK) and pharmacody-

namics (PD). PK studies address the effect the body has on the drug

and encompasses the appropriate drug delivery of therapies. It is

influenced by factors, such as absorption, distribution, metabo-

lism and excretion. A PD characterisation examines how drugs

affect the body by exploring whether the drug alters its molecular

target in tumour and surrogate tissue, and delineates the asso-

ciated cell biological effects.

The development of antineoplastics is a large investment by the

private and public sectors, however, the limited availability of

predictive preclinical systems obscures our ability to select the

therapeutics that might succeed or fail during clinical investiga-

tion. In this article we consider the different types of animals

models used to test novel therapeutics and chemotherapies, and

discuss the strengths and weaknesses of each in this regard.

Types of animal model used in therapeutic assessment
The most common animal model system currently used in oncol-

ogy drug development and discovery remain the implantable or

engraftment models, in which cultured human (xenografts) or

mouse (allograft) cells or tumour tissue explants are grafted into
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TABLE 1

Definitions of different in vivo animal models

Type of model Cell type Immune status Site of
tumour

Advantages Disadvantages

Syngeneic or
allograft

Mouse Immunocompetent SC skin Low cost Rodent tumour cells

Immunocompetent host Poor representation of human disease

Reproducible Unsuitable for testing humanised antibodies
Easily made Non-natural site of tumour

Large numbers of animals

available

Wide variety of tumour
types can be generated

Xenograft Human Immune deficient SC skin Low cost Immunosuppressed

Easily made Different representation of human disease

Reproducible Non-natural site of tumour
Homogenous Rodent tumour microenvironment

Large numbers of animals

can be made

Orthotopic Human Immune deficient SC organ of
interest

Relatively low cost compared
to GEMMs

Immunosuppressed

Hosts readily available Requires surgical skill

Tumours at natural sites Rodent tumour microenvironment

Can mimic human metastases
patterns

Difficult to follow tumour kinetics

GEMM transgenic Mouse Immunocompetent Organ of

interest

Resemblance to human cancer Expensive

Heterogeneous Complicated breeding schemes

Immunocompetent Restricted experience
Investigates the tumour cells

and the microenvironment

Variable penetrance and tumour

latency

Heterogeneous

Difficult to follow tumour kinetics
Gene mutation found in all cells

of the body

Non-physiological levels of
mutated genes

GEMM
endo-genous

Mouse Immunocompetent Organ of

interest

Resemblance to human cancer Expensive

Heterogeneous Complicated breeding schemes

Immunocompetent Restricted experience

Investigates the tumour cells
and the microenvironment

Variable penetrance and tumour
latency

Heterogeneous

Difficult to follow tumour kinetics

Abbreviation: SC: subcutaneous.
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recipient immunodeficient or immune-competent mice (Table 1).

These models have been used extensively in the academic and

pharmaceutical industry research settings to prioritise compounds

for clinical testing [1,6]. Subcutaneous implantable models offer

the ability to rapidly examine large cohorts of relatively uniform

tumours whose growth and response to drugs can easily be

assessed. Unfortunately, while such models are relatively inexpen-

sive, convenient and easy to use, they generally behave differently

than the corresponding human cancer. When used in the drug

discovery setting many agents show consistent and compelling

anticancer activity in specific implantable model systems, but

unfortunately oftentimes fail in later stages of clinical develop-

ment [7,8].

Xenograft models
The xenograft animal models utilising human cells or tissue frag-

ments require the use of immunocompromised mice to enable
254 www.drugdiscoverytoday.com
engraftment, and have been established for virtually every human

cancer to some extent. Xenografts typically make use of only a few

human cell lines that grow quickly and are often sensitive to

chemotherapy [7]. Xenograft models are a useful approach to

evaluate the direct effects of humanised monoclonal antibodies,

such as trastuzumab and bevacizumab, although any host depen-

dent immunomodulatory effects are disrupted.

Syngeneic models
A syngeneic model, where murine cell lines are injected subcu-

taneously in immune-competent murine hosts (Table 1), is a

model that avoids the immune-deficiencies found in other xeno-

graft models [2]. However, there is a poor correlation between

the therapeutic activity of compounds tested in syngeneics

or cell-based assays and their efficacy in humans, potentially

owing to innate differences in the biology of human and mouse

cells [9].
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The basic problem is that neither cell-based studies nor xeno-

graft models accurately reconstruct the complex interactions

between tumour and host. Tumours are complex masses com-

posed of neoplastic cells, extracellular matrix, and stromal cells

comprising immune, fibroblastic, and vascular compartments.

Indeed, in some tumour types, stromal cells outnumber tumour

cells [10]. This diversity is diminished and altered in xenograft

systems [11]. Other features changed in xenograft models include

deranged tumour tissue architecture, lack of normal tissues nearby

and the disruption of lymphatic and vascular supply and immune

cells [3]. Despite this, they are still used widely in academia and

industry because they are relatively inexpensive and easy to use

[12,13].

Orthotopic models
A specialised version of the xenograft model has also been pro-

duced by transplanting tumour tissue or cancer cells to the ortho-

topic site (Table 1). Orthotopic models are more technically

challenging to generate, however, they offer the advantage of

examining effects on the microenvironment (albeit murine micro-

environment with human cells and tissue) and the effect on

metastatic spread [14]. Although there are instances where sub-

cutaneous and orthotopic models have been compared, a more

thorough investigation into the potential advantages of orthoto-

pically transplantable tumours over simple subcutaneous models

is required [15]. For example, parameters, such as chemosensitivity

and vascularisation are known to be affected by tumour micro-

environment [16,17].

Tumour graft models
Many groups have now started to report their experiences with

fresh grafting from patient derived tumours into immunocom-

promised mice as a tool in late preclinical drug development [18].

These patient derived xenograft (PDX) models have been used to

screen novel therapeutics, evaluate markers of response and resis-

tance, and could be used to select drugs to treat individual

patients. They do have some drawbacks, however, including a

variable transplantation failure rate, higher labour costs and, with

ongoing passages between mice, a higher mutation rate away from

the parent tumour over time. This all leads to overall increased

costs compared with normal xenografts. Current trials using PDX

models are ongoing [19,20].

Genetically engineered mouse models
The murine model system to be investigated most recently in the

therapeutic field is genetically engineered mouse models

(GEMMs), where tumour development occurs in situ, in appro-

priate tissue compartments thus enabling complex processes to be

modelled (Table 1). Thus it is reasonable to expect that GEMMs

carrying the genetic signature of the native malignancy could

recapitulate the biological manifestations of cancer in addition

to the clinical behaviour, offering an alternative to traditional

preclinical assays [21]. To date, few well characterised GEMMs

have been used in preclinical drug evaluation trials.

GEMMs of cancer
GEMMs are the most advanced animal models of human cancer,

and many models now exist that closely recapitulate the human
disease. The use of transgenic and conditional knockout and/or

knockin techniques has enabled many exciting scientific discov-

eries over the past few decades, including mechanisms of tumour

initiation, progression and maintenance [3], in addition to drug

resistance [10,22]. Transgenic mice express oncogenes or domi-

nant negative tumour suppressor genes in a non-physiological

manner. Endogenous GEMMs use knockout and knockin technol-

ogy to enable conditional expression of oncogenes from their

native promoter, deletion of tumour suppressor genes, or expres-

sion of dominant negative versions of tumour suppressor genes.

Conditional GEMMs rely on the use of site-specific recombinases,

such as the Cre-lox bacterial recombinase system, to control the

spatial and temporal control of gene expression in the mouse

genome, to further improve the faithfulness of the model [3].

Ideally GEMMs used to model human cancer should harbour

similar genetic alterations, and these genetic alterations should be

found in the appropriate cell types. In addition, the progression of

the cancer in the GEMM should recapitulate the histopathology

and molecular abnormalities of the cognate human disease [23].

Furthermore, once the tumour has developed the response to

standard clinical treatments should be assessed, in efforts to

‘credential’ the model [23]. Such an approach has been reported

in Kras-driven non-small cell lung carcinoma and pancreatic

ductal adenocarcinoma models [10,24]. Comparing these results

to corresponding clinical trials indicates these GEMM model

human responses well, thereby supporting the utility of certain

GEMMs in predicting outcome and interrogating mechanisms of

therapeutic response and resistance.

Nonetheless, there are several shortcomings regarding the use of

GEMMs that must be considered before use. First, GEMMs often

take a long time to develop tumours and might require sophisti-

cated imaging techniques to detect and monitor tumour growth,

such as high resolution ultrasound scanning and magnetic reso-

nance imaging [10]. Secondly, the usefulness of any given GEMM

is dependent on several further issues including fidelity of the

genetic lesions, kinetics of tumour progression, and the ability to

detect disease and perform specific interventions. Examples of

models that manage to address these factors include a K-rasG12D

driven pancreatic cancer model [25] and a B-rafV619E driven mel-

anoma model [26]. Third, GEMMs oftentimes have variable pene-

trance and require complicated breeding schemes, and the whole

process is significantly more expensive than testing drugs in vitro or

in xenografts. Finally, some drugs, particularly highly specific

monoclonal antibodies, such as trastuzumab and bevacizumab,

might only react with human epitopes, precluding an assessment

in GEMMs [5]. These limitations notwithstanding, GEMMs have

great potential to accelerate assessment of novel therapeutic

agents.

Preclinical therapeutic testing
The primary purpose of preclinical therapeutic efficacy testing is to

predict whether a particular compound will be successful in the

clinic. Despite encouraging preclinical results, unfortunately most

drugs are found to be ineffective late in their development, with

only a small percentage (5%) of patients in Phase 1 clinical trials

responding [27]. Apart from using inaccurate tumour models,

there are many other reasons why preclinical studies fail to predict

clinical activity. Species-specific PK, in addition to differences in
www.drugdiscoverytoday.com 255
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PD, drug delivery, and tumour heterogeneity might all contribute

to discordant results. Such failures are costly to scientists and drug

companies and of great consequence to the patients that optimis-

tically enrol in experimental clinical trials.

Preclinical models should be able to provide information on

therapeutic mechanism of action, potential PD biomarkers,

including biomarkers for prognostic and diagnostic endpoints,
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toxicity, off-target activity and possibly resistance mechanisms.

Thus, PK–PD modelling could be used to inform Phase 0 and 1 trial

design and therefore should be incorporated in preclinical studies

where possible (Fig. 1). However, it remains uncommon to have

comparable information relating to tumour PK and how this is

related to PD when the drug is evaluated in the clinic. Therefore

it is often unknown whether the selected therapy is actually
 Detection
f tumour

(a)

3. Assessment
of response

2. Enrollment

(b)

(c)

(d)
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reaching its target, yet alone whether it is inhibiting pathways or

impacting tumour cell biology and our clinical trial designs need

to be modified to ensure that these data are collected.

In the future, predictive biomarkers are likely to guide therapy,

as they already do in patients with breast cancer (trastuzumab) [28]

and GIST (c-kit) [29] and when tested using an ‘all comer’

approach, many novels agents investigated thus far have been

found to be ineffective late in their development [27,30]. Clinical

trials are now being developed that incorporate predictive mole-

cular biomarkers at an early stage, which would enable potential

enrichment for patients most likely to benefit from the drugs

[30,31]. Although this approach has advantages, there are multiple

cancers for which predictive molecular biomarkers are not yet

available. Identification of a validated assay that can measure a

biomarker of target activation or target inhibition is often challen-

ging. Animal models offer the promise of being able to identify

such biomarkers, thereby accelerating their evaluation in clinical

trials.

Predictive in vivo models
There are multiple measurements that determine whether an in

vivo model will accurately predict responses to novel therapeutics.

First, the response of the model to standard treatments should be

assessed as discussed [23]. Even if a malignancy has limited effec-

tive therapeutic options, agents used thus far should still be

evaluated for their lack of response. If the model generally

responds to therapeutics that fails to have an impact on the

corresponding human cancer, it is likely this model will not be

effective at predicting responses to new agents. Perhaps this is one

reason why xenografts have been poor at predicting responses to

novel therapeutics [7]. GEMMs will ideally show reasonable pene-

trance and tumour latency and recapitulate the histological

appearance of the human cancer. If tumour latency is too short

the GEMM might not accurately capture the complex interplay
TABLE 2

GEMMs of cancer used to assess therapeutic efficacy preclinically

Tumour type Model type [Refs]

Breast and ovarian BRCA1 and 2 and p53 deficient mod

MMTV-Myc and MMTV-Ras models [

Lung Endogenous Kras/PIK3CA or EGFR m

Chronic myeloid leukaemia BCR-ABL mutation [66]

Pancreatic ductal adenocarcinoma Endogenous Kras and p53 mutation

Pancreatic neuroendocrine RIP-TAg model [47]

Lymphoma Em-myc model [68]

APL PML-RARa and PLZF-RARa models [

Melanoma B-Raf model [26]

Abbreviations: APC: adenomatous polyposis coli; As2O3: arsenic trioxide; MEK: MAP kinase kin

phosphatidylinositol 3-kinase; RA: retinoic acid; TKI: tyrosine kinase inhibitor.
between tumour cells, the microenvironment and cooperating

genomic changes. By contrast, if the model takes too long to

develop tumours it will be impractical for therapeutic assessments.

Newer technologies, such as non-germline GEMMs, could be used

in the future to overcome some of the limitations posed by

traditional GEMMs [32].

There must also be a facile way to assess tumour progression and

response to therapeutics. Although serial imaging is commonly

performed to assess therapeutic response in human trials, func-

tional imaging in preclinical trials has lagged behind. Many groups

are currently investigating different imaging modalities in

GEMMs, such as dynamic contrast enhanced magnetic resonance

imaging (DCE-MRI), positron emission tomography computer

tomography (PET-CT) and high resolution ultrasound, and the

best technique will usually vary depending on the model under

examination [23]. This rapidly expanding field might also steer the

way for superior imaging modalities to permit earlier radiological

assessment of therapeutic effects in human cancer [33,34].

A particular difficulty of recent years has been the ability to

accurately study metastases in different models. Orthotopic mod-

els and GEMMs do metastasise to relevant organs of interest but

potentially at a lower rate than the corresponding malignancies

[35]. Nevertheless, models have now been established to study the

role of spontaneous cancer metastases and examine effects of

therapeutic agents in solid tumours [35]. It has recently been

shown in a mouse model of pancreatic cancer that tumours

metastasise at an early stage and the majority of patients will

present with metastatic disease [36,37]. These results have clear

implications for the treatment of pancreatic cancer [38].

As no model of cancer is perfect, GEMMs of cancer should be

used alongside cell culture-based, xenograft and transplant model

systems, in the preclinical evaluation of anticancer targets. The

knowledge acquired from each system will aid the understanding

of novel therapeutics more so than any system alone. This is
Therapies tested Refs

els [57] PARP inhibitors [60]

58,59] Platinum agents [61]

Doxorubicin; paclitaxel [62]

utations or p53 mutations [63] PI3K/AKT inhibitors [64]

MEK inhibitors [40,41]

EGFR inhibitors [65]

HSP90 and rapamycin [42]

BCR-ABL TKI [67]

s [54] Gemcitabine [10]

Hedgehog inhibitors [24]

EGFR and VEGF inhibitors

Cyclophosphamide [45]
Sunitinib (TKI) [22]

Everolimus (mTOR) [47]

Chemotherapeutics [69]

70] RA; As2O3 [43,71]

Rapamycin [26]
MEK inhibitor

ase; mTOR: mammalian target of rapamycin; PARP: poly(ADP-ribose) polymerase; PI3K:
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something that should be encouraged and performed more often

by industry and academia.

Preclinical to clinical transition
During recent years there have been many novel therapeutics tested

in various GEMMs of cancer. Preclinical efficacy has been shown for

many types of drugs, such as receptor tyrosine kinase inhibitors,

rapamycin analogues, angiogenesis inhibitors and prostaglandin

inhibitors [7]. Although we will not discuss all of these findings,

significant recent results are discussed below. Table 2 summarises

some of the commonly used GEMMs in the assessment of novel

therapeutics.

Epidermal growth factor (EGFR) inhibitors have been applied

successfully in the clinic for the treatment of lung adenocarci-

noma [39]. Results from GEMMs based on the genetics of lung

adenocarcinoma revealed similar successes [40,41]. More recently

a KRAS-driven GEMM of lung adenocarcinoma has revealed sig-

nificant preclinical responses with the combination of a HSP90

inhibitor and rapamycin [42]. These promising results also offer

potential for other therapeutic combinations in the treatment of

this aggressive cancer, and translation to the clinic is eagerly

awaited.

In acute promyelocytic leukaemia (APL), there has been remark-

able development and effective new treatments created owing to

the accurate GEMMs that have been developed for this disease

[43]. APL is now a highly curable condition, and patients are

stratified to treatments based on the genetic criteria of their

disease. The GEMMs of APL were fundamental in this process,

and were used as preclinical predictive engines, with results trans-

lated into highly successful clinical trials [44].

Recent significant achievements in the field of pancreatic neu-

roendocrine tumours (NETs) have also been well documented. Well

designed preclinical therapeutic trials investigated the use of suni-

tinib, and other kinase inhibitors, in the genetically engineered RIP-

TAG mouse model [45–47]. The results of these led to the develop-

ment of Phase 1/2 trials in NET tumours, and eventually successful

Phase 3 trials, that are set to change the face of treatment for these

rare tumours [48,49]. These are the first Phase 3 therapeutic success

stories directly translated from results in GEMMs of cancer.

Despite the multiple success stories there have been some

clinical failures that showed efficacy in GEMMs. Perhaps the most

renowned story involves inhibitors of farnesyltransferase (FTIs),

developed as inhibitors of Ras processing [50]. These drugs showed

promise by causing regression of HrasG12V-induced mammary

tumours [51], but unfortunately these results did not translate

to patients whose tumours harboured mutations in the RAS gene

[52]. Evaluation of the preclinical studies has permitted further

thought into the possible reason for this failure. Patients with

KRAS mutations are relatively resistant to the effects of FTIs, unlike

those with HRAS mutations. Unfortunately the vast majority of

human cancers have mutations in the KRAS oncogene rather than

HRAS [53].

Additionally, a recent elegant study has been performed using

Kras-driven GEMMs [24]. This study examined the efficacy of

chemotherapeutics, EGFR, and vascular endothelial growth factor

(VEGF) inhibitors in the treatment of lung and pancreatic adeno-

carcinoma, clearly showing an excellent correlation between the

results in the GEMMs and clinical trial results achieved thus far,
258 www.drugdiscoverytoday.com
both positive and negative [24]. Although the correlations were

analysed retrospectively, there were multiple comprehensive pre-

clinical endpoints and methods used, guiding the way for future

therapeutic advances and translation to clinical trials.

Multiple early stage clinical trials are currently underway in

different cancer types, designed with the knowledge of successful

results from preclinical studies using GEMMs. It is too early to say

whether the majority of these will have similar successful out-

comes eventually, but results thus far lend confidence to the use of

GEMMs as a tool in therapeutic assessments. A thorough under-

standing of therapeutic mechanisms, preclinical models and early

stage clinical trials is required for groups to accomplish successful

translation of novel therapeutics. Importantly, if clinical trials fail

to show efficacy when GEMMs show response, these should be

able to answer the questions as to why the translation has failed.

This can only be completed if the trials in question are designed

with scientific rationale and biomarker driven endpoints.

Concluding remarks
Selecting the most appropriate in vivo model is essential during the

drug development process to enable accurate modelling of ther-

apeutic efficacy. By developing innovative preclinical trials using

sophisticated animal models that recapitulate the human malig-

nancies in question, we might be able to advance the field of drug

discovery, and improve success rates for potential novel therapeu-

tics in clinical trials. Figure 1 illustrates the approach we have

taken in the KPC mouse model of pancreatic cancer [54].

Hurdles remain, however, and no model is going to be able to

perfectly recapitulate the human situation. Historically, the

majority of Phase 1 trials have admitted patients who were heavily

pretreated with multiple different chemotherapeutics and targeted

agents. Unfortunately this situation would be difficult to repro-

duce in the mouse, due to feasibility, time and money, and

individualised patient responses to prior treatment. Some labora-

tories do manage to study therapeutic resistance, but this is only

possible in models where initial sensitivity to an agent is dramatic

enough to enable the development of acquired resistance [55].

Early stage clinical trials are now being designed with more

emphasis on the biological effects of therapeutics, incorporating

validated biomarkers as endpoints, and utilising an adaptive

approach for analysing information in real time [30]. Window

studies and Phase 0 trials are becoming increasingly popular,

encouraging further insight into novel therapeutic mechanisms

of action at an early stage of development [56].

Pharmaceutical companies have been reluctant to delay any

Phase 1/2 trials while awaiting outcome of preclinical trials,

potentially taking many years to complete. With recent encoura-

ging Phase 3 results, correlating with earlier GEMM preclinical

studies [48,49], the pharmaceutical industry might now decide

that it is appropriate to invest additional resources into better

designed preclinical trials with predictive animal models. For this

to happen close collaborations are required between industry and

academia, enabling animal and drug transfers between organisa-

tions, and divulging of expert knowledge each possesses. This

would ultimately lead to a swifter, hopefully successful, transla-

tion to the clinic which, in the long term, would actually be cost-

effective compared with the failure of a therapeutic late in its

development.
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