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The combined potential of hydrogels and rapid prototyping technologies has been an exciting route in
developing tissue engineering scaffolds for the past decade. Hydrogels represent to be an interesting
starting material for soft, and lately also for hard tissue regeneration. Their application enables the
encapsulation of cells and therefore an increase of the seeding efficiency of the fabricated structures.
Rapid prototyping techniques on the other hand, have become an elegant tool for the production of
scaffolds with the purpose of cell seeding and/or cell encapsulation. By means of rapid prototyping, one
can design a fully interconnected 3-dimensional structure with pre-determined dimensions and porosity.
Despite this benefit, some of the rapid prototyping techniques are not or less suitable for the generation
of hydrogel scaffolds. In this review, we therefore give an overview on the different rapid prototyping
techniques suitable for the processing of hydrogel materials. A primary distinction will be made between
(i) laser-based, (ii) nozzle-based, and (iii) printer-based systems. Special attention will be addressed to
current trends and limitations regarding the respective techniques. Each of these techniques will be
further discussed in terms of the different hydrogel materials used so far. One major drawback when
working with hydrogels is the lack of mechanical strength. Therefore, maintaining and improving the
mechanical integrity of the processed scaffolds has become a key issue regarding 3-dimensional hydrogel
structures. This limitation can either be overcome during or after processing the scaffolds, depending on
the applied technology and materials.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

To date, organ and tissue transplantation remains one of the
most important while complex options in order to restore or
enhance life expectancy. The most recent annual report prepared
by the Scientific Registry of Transplant Recipients (SRTR) in
collaboration with the Organ Procurement and Transplantation
Network (OPTN) registered 112,905 patients in the USA awaiting
transplantation at the end of 2011, while only 26,246 trans-
plantations were performed [1]. If we keep the steady increase in
life expectancy in mind, these numbers emphasize the shortage of
organ donors [2]. In addition, diseases, infections and rejection of
the tissue by the host often complicate transplantation [3]. To
overcome these problems associated with transplantation, the last
few decades, tissue engineering (TE) has grown as a new inter- and
multi-disciplinary scientific field [4]. This discipline has rapidly
emerged and combines the principles of engineering and life
sciences. It holds as main objective the recovery, maintenance and
improvement of tissue performance [4e6]. The European
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Commission on Health and Consumer Protection defines TE as the
persuasion of the body to heal itself through the delivery, to the
appropriate site, independently or in synergy, of cells, biomolecules
and supporting structures [7].

Researchers will strive to fulfil those afore mentioned objectives
through the utilization of isolated cells [8e11], tissue inducing
substances [12e14] and/or scaffolds [3,4,6,15]. Although, conven-
tionally, the application of a supporting scaffold is preferred in
circumstances where the defect acquires certain dimensions. Post-
processing cell seeding andmaturation to tissue has therefore been
implemented as a commonly applied TE strategy [15e19].
Expanding the cell population and maturation to tissue is per-
formed in bioreactors, which can be described as devices in which
biological and/or biochemical processes are manipulated through
close control of environmental and process-bound factors such as
pH, temperature, pressure, and nutrient and waste flow [20]. When
working with low-water content polymers, post-processing cell
seeding is the only available seeding mechanism. However, insuf-
ficient cell seeding and/or non-uniform cell distribution have been
reported using this methodology [20,21]. There is thus a need for
better andmore uniform seeding principles. Enhancing the seeding
efficiency can, among other, be accomplished by cell encapsulation
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Fig. 1. Schematic illustration integrating the complex multi-disciplinary needs which
determine the constraints for the ideal scaffold fabrication design.
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strategies. This method requires a high-water content
environment.

Hydrogels based on natural or synthetic polymers have been of
great interest regarding cell encapsulation [22e37]. For the past
decade, such hydrogels have become especially attractive as
matrices for regenerating and repairing a wide variety of tissues
and organs [7,12,33e92]. Depending on the hydrophilicity, they can
absorb up to thousands of times of their dry weight and form
chemically stable or (bio)degradable gels. Depending on the nature
of the hydrogel network, ‘physical’ and ‘chemical’ gels can be
distinguished. Hydrogels are called ‘physical’ when the network
formation is reversible. In contrast to ‘chemical’ hydrogels, which
are established by irreversible, covalent cross-links. Combinations
of both physical and chemical networks can also be achieved, e.g.
gelatine modified with methacrylamide groups [93].

The characteristic properties of hydrogels make them especially
appealing for repairing and regenerating soft tissue [32,37e39,
85e92,94e97]. One of the main disadvantages of processing hydro-
gels is the difficulty to shape them in predesigned geometries. This
article will provide a detailed overview of the different rapid proto-
typing techniques that are compatible with hydrogel manufacturing
andallow to accurately shape external and internal geometries. Since
we did not find an article that summarizes the potential advantages
and disadvantages regarding the processing of hydrogels with RP
techniques, it is the purpose to highlight the advantages, but more
importantly also the current limitations of the distinctive techniques,
together with the respective hydrogels used so far.

In the first part, an introduction to scaffolding and basic
concepts of scaffold-based and scaffold-free TE will be given. The
next part handles hydrogel-friendly RP techniques used in scaffold-
based TE. Finally, the implementation of RP technology in scaffold-
free TE will be explained.

2. ECM mimetics: Current concepts

2.1. Scaffold-based vs. scaffold-free TE

From a cell biology perspective, 2D cell culture models only
provide physiologically compromised cells induced by an unnatural
environment [98], and the lack of a 3D structure will cause cells to
form a random 2D mono-layer [17,19]. In vivo, cells are subjected to
growth in three dimensions and complex cellecell interactions.
This observation encouraged a paradigm shift from conventional
2D cell culture models towards 3D microenvironments [99].
To obtain a more realistic understanding of cellecell and
cellebiomaterial interactions, Kirkpatrick et al. [100] proposed the
use of co-culture models in vitro. Independent of the applied
strategy, the ultimate goal of TE remains the same. Nevertheless,
regarding the aspect of 3-dimensional cell migration, proliferation
and differentiation behavior and requisites, one can distinguish two
major premises. Currently, both of them are being heavily explored.
The first one is based on the presumption that cells require a 3D
biomaterial scaffold that closely mimics the corresponding extra-
cellular matrix (ECM) [99,101]. In this approach, the biomaterial
construct acts as a necessary cell guide and supporting template.
The second one finds its roots in the hypothesis that cells have
a considerable potency to self-organize through cellecell interac-
tions and is referred to as ‘scaffold-free TE’ [102]. While the former
theory maximizes the role of a supporting structure as a cell guide
and minimizes the potency to self-assembly, the latter reverses the
importance of both contributions.

2.2. Scaffolds

Ideally, scaffolds can be seen as ECM biomimetic structures with
three main objectives [17,18]: (i) defining a space that moulds the
regenerating tissue; (ii) temporary substitution of tissue functions,
and; (iii) guide for tissue ingrowth. It is clear that scaffold design
should meet the needs of some basic requirements to be able to
meet those objectives, including [3,15,17e19]: high porosity (pref-
erably 100% interconnectivity for optimal nutrient/waste flow and
tissue ingrowth); relevant geometry and pore dimensions (5e10
times the cell diameter); biodegradable with adjusted degrada-
tion time; maintaining the mechanical integrity during a prefixed
time frame; it should have suitable cellebiomaterial interactions,
and; be easy to manufacture. Adjusting the mechanical and
degradation properties to the desired tissue is essential. Either
enzymatic or non-enzymatic hydrolytic processes control the
degradation profile. Specifically, TE requires biomaterials that
provoke cell interactions (wbioactivity) [103] and as little as
possible adverse body reactions (wbiocompatibility) [104]. Control
over the material bioactivity can be achieved by incorporating
growth factors [105], enzymatic recognition sites [106], adhesion
factors [94,107], or material modifications [106]. Material modifi-
cation is a general term indicating either bulk modification
[103,108] or surface modification [103,109,110]. Modifying the bulk
properties is closely related to material biocompatibility, the
physical and chemical properties covering the life-span of the
implant [111], while varying the surface chemistry reflects on the
initial cell/tissueematerial interactions [111,112]. Fig. 1 illustrates
schematically the complex multi-disciplinary interactions inherent
towards scaffold fabrication. In the sub-science of scaffolding, both
conventional and rapid prototyping (RP) techniques have been
explored. Conventional scaffold fabrication setups include tech-
niques such as particulate leaching [85,113e115], gas foaming
[114e117], fibre networking [118,119], phase separation [120,121],
melt moulding [122,123], emulsion freeze drying [124,125], solu-
tion casting [126,127], freeze drying [81,87,128] and combinations
of those. Conventional/classical approaches are defined as
processes that create scaffolds with a continuous, uninterrupted
pore network. Nonetheless, they completely lack long-rangemicro-
architectural channels [19]. Other reported disadvantages involve
low and inhomogeneous mechanical strength, limited porosity and
insufficient interconnectivity, inability to spatially design the pore
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distribution (internal channels) and pore dimensions, and difficulty
in manufacturing patient specific implants (control over external
geometry is limited) [19,129]. Furthermore, the use of organic
solvents during processing is seen as a second major drawback in
addition to the above mentioned architectural drawbacks. The
presence of organic solvent residues can pose significant constrains
related to toxicity risks and carcinogenetic effects [19]. Despite
some adaptations, over the years the scaffold design remains
process-dependent by means of classical approaches. A more
design-dependent method would be attractive, and this can be
attained by RP techniques.

2.3. Controlling the external and internal geometry

Solid freeform fabrication (SFF) is the general term covering all
techniques that produce objects through sequential delivery of
energy and/or material. When rapid fabrication of a prototype,
a finished object or a tool is pursued, they are respectively called
rapid prototyping (RP), rapidmanufacturing (RM) and rapid tooling
(RT) [130]. By means of RP, an additive computer-controlled layer-
by-layer process generates a scaffold. 3D computer models shape
the external design, and such models can either be designed by
CAD software or by modelling imaging data (CT, MRI). On the other
hand, the internal architecture is determined by the processing of
the CAD data into an STT file and subsequent slicing of the STT data
(generation of the machine parameters). This directly indicates one
of the greatest assets of RP: direct fabrication of scaffolds with
a complex, patient specific external geometry in combination with
a precise control over the internal architecture (limited by the
resolution of the system) [17,19,65]. Other advantages comprise:
high degree of interconnectivity, possibility to use heterogeneous
materials, high speed due to a high degree of automization and the
limited number of process steps, and a superior cost-efficiency
[3,65]. Both direct and indirect RP methods exist. In the former
case, the scaffold is directly processed from a biomaterial, in the
latter case the scaffold is processed out of an RP mould. Worldwide,
more than 30 different RP techniques are being applied in the most
diverse industries, and around 20 of them found applications in the
biomedical field [130]. Several authors have reviewed this partic-
ular subject [3,130,131]. Although the wide diversity of RP
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Fig. 2. Classification of RP techniques with biomedical appl
technologies, only some of them seem to be compatible for the
processing of hydrogels. The next chapter describes the different RP
scaffolding techniques compatible with hydrogels.

3. Rapid prototyping hydrogels: Powerful aid in making
scaffold-based tissue engineering work

A primary classification of the SFF techniques supporting
biomedical applications can be made hinged on the working
principle: (i) laser-based; (ii) nozzle-based, and; (iii) printer-based
systems. Laser-based systems benefit from the photo-
polymerization pathway as a basis to fabricate cross-linked poly-
meric TE scaffolds. The well-known processing of (pre)polymers by
dint of extrusion/dispension supports the second category of RP
systems. The last subclass works with powder beds and deposition
of a binder that fuses the particles, or directly depositing material
using inkjet technology. An important characteristic feature of
every technique will be its resolution. Every technique is subdued
to a lower technical limit size of the smallest details producible.
This so-called lower limit shows a clear relationship with the
feasible scale of the object: the higher the resolution of the smallest
details, the smaller will be its maximum object size [132]. However,
since not all RP techniques are applicable for the processing of
hydrogel materials, some more than others, the amount of RP
technologies is further diluted. Fig. 2 classifies the different RP
techniques with biomedical applications. The fabrication of
hydrogel scaffolds requires mild processing conditions. Some of the
techniques mentioned in Fig. 2 are not able to meet those
constraints due to the rather harsh processing conditions.
Exploring on all of those techniques is not the purpose of this
review in which the hydrogel compatible systems only will be
explained in detail.

3.1. Laser-based systems

3.1.1. Working principles and recent trends of laser-based systems
With the exception of selective laser sintering (SLS), all of the

laser-based systems are suitable for hydrogel processing. Unlike the
nozzle- and printer-based systems that sequentially deposit
material, this subclass sequentially deposits light energy in specific
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predefined patterns. This directly implies that only photocross-
linkable prepolymers can be employed to finally obtain a cross-
linked hydrogel network.

SLA: Stereolithography (SLA) is considered to be the first
commercially available SFF technique, developed by 3D systems
in 1986 [132]. An SLA apparatus (Fig. 3) consists of: a reservoir to
be filled with a liquid photocurable resin, a laser source
(commonly UV light), a system that controls the XY-movement of
the light beam, and a fabrication platform that permits move-
ment in the vertical plane. Scanning the surface of the photo-
sensitive material produces 2D patterns of polymerized material
through single photon absorption at the surface of the liquid
material. The build-up of a 3D construct is made possible using
a layer-by-layer approach, whereby the fabrication platform
moves stepwise in the Z-direction after a 2D layer is finished. The
step height of the fabrication platform is typically smaller than
the curing depth, ensuring good adherence of subsequent layers.
Post-treatment steps involving washing-off excess resin, and
further curing with UV light are in most cases necessary. Arcaute
et al. [133] demonstrated the possibility to alter the resolution of
Fig. 3. Scheme of bottom-up and top-down stereolithography setups. The bottom-up
setup shown is an example of a system whereby the laser scans the surface for the
curing of the photosensitive material. In the example of the top-down setup, dynamic
light projection technology is used to cure a complete 2D layer at once.
the cure depth by varying the laser energy, the concentration of
poly(ethylene glycol) dimethyacrylate (PEG-DMA) as photocross-
linkable material, and the type and concentration of the photo-
initiator. In addition, adjusting the scanning speed influences the
cure depth.

m-SLA: The working mechanism of micro-stereolithography (m-
SLA) can be considered the same as that of a normal SLA. The
difference between both involves the resolution of the system. m-
SLA systems are typically able to build very accurately (a few
microns) objects of several cubic centimeters [134e137].

Fig. 3 (top) shows a scheme of a so-called bottom-up setup, in
which an object is built from a fabrication support just below the
resin surface. Subsequent layers are being cured on top of the
previous layers by irradiation from above. Although, to date this
is the most applied setup [133,135e140], a top-down approach
(Fig. 3 bottom) is gaining interest [71,132,134]. Top-down setups
have a non-adhering, transparent plate acting as the bottom of
the liquid reservoir. Polymerization of the photosensitive material
occurs through irradiation from underneath, and the fabrication
platform moves in the opposite direction as in the bottom-up
approach. In this way, every newly formed layer is located
beneath the previous one. Separating every newly formed layer
from the bottom plate will subject the structure to larger
mechanical forces but on the other hand the vat content can be
minimized, the irradiated surface will not be exposed to the
atmosphere (cross-linking efficiency limitation due to oxygen will
be minimized), recoating the structure with a new resin layer is
not required, and the illuminated area is always smooth [132].
Another recent and more fundamental trend in the field of SLA is
the emerging use of digital light projection (DLP) technology
[134,140e142]. The working principle is illustrated in Fig. 3
(bottom) in the top-down scheme, but is also applicable for
bottom-up setups. Projection technology enables the curing of
a complete layer of resin in one go, which obviously reflects on
the building time. A Digital Micro-mirror Device� (DMD) consists
of an array of mirrors, which can independently be tilted in an
on/off state. In this way the DMD serves as a dynamic mask that
projects a 2D pattern (often designed in PowerPoint slides) on
the surface. Instead of DMD, LCD displays have also been
employed as a dynamic mask projector [143,144], however, DMD
offers better performance in terms of optical fill factor and light
transmission [140].

SGC: A projection technology somewhat similar to DMD
technology is solid ground curing (SGC) developed by Cubital Inc.
[145,146]. Coating the fabrication platform by spraying a photo-
sensitive resin is the first step in the SGC workflow. Meanwhile,
the machine prints a photomask of the layer to be built on a glass
plate above the fabrication platform. The printing process
resembles the one applied in commercial laser printers. Solidifi-
cation of the sprayed layer occurs when the mask is exposed to
UV light, only permitting irradiation of the transparent regions.
After the layer is completed, excess liquid resin is removed by
vacuum and replaced by a wax to support the next layer. Before
repeating the cycle, the layer is milled flat to an accurate, reliable
finish for the next layer.

2PP: Two photon-polymerization (2PP) is an emerging state-of-
the-art laser-based technique. In this process, light is used to trigger
a chemical reaction leading to polymerization of a photosensitive
material. Unlike other light curing systems (single photon-poly-
merization), 2PP initiates the polymerization through irradiation
with near-infrared femtosecond laser pulses of 800 nm (Fig. 4). In
the focal point, a suitable photoinitiator absorbs two photons, with
awavelength of 800 nm, simultaneously, causing them to act as one
photon of 400 nm, and thus starting the polymerization reaction
[134]. The nonlinear excitation nature triggers polymerization only



Fig. 4. Working principle of two-photon photopolymerization. In the focal point of the
near-IR laser beams, the photosensitive polymer is cross-linked. A ‘true’ 3D object is
obtained.

Table 1
Hydrogel materials explored in laser-based systems.

Laser-based
systems

Hydrogel materials Cell encapsulation Reference

SLA

Gelatin-methacrylate û [71,134,
159]

Gelatin-methacrylamide û
Hyaluronic acid-
methacrylate

Murine
fibroblasts
(NIH-3T3)

[155,157]

Murine
embryonic stem
(ES) cells

Cystein-modified
agarose

û [156]

HEMA û [148]
PEG-D(M)A Human hepatoma

cells (HepG2)
[31,32,133,
138,140,
154]Hepatocytes

NIH 3T3
Human dermal
fibroblasts (HDFs)
Chinese hamster
ovary (CHO) cells
Murine OP-9
marrow stromal
cells
Mammalian cells

PEG-D(M)A û [142,
150e153]

m-SLA

Alginate þ Acrylated
TMC/TMP

Chondrocytes [135e137]

Gelatin-methacrylamide û [134]
PEG-DA û [158,159]

2PP

Gelatin-methacrylamide û [134,
163e165]

Fibronectin û [165]
Bovine serum
albumin (BSA)
PEG-DA û [160,161]
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in the focal point, while other regions remain unaffected. This
approach has potential solidification resolutions below the
diffraction limit of the applied light. Moving the laser focus enables
the fabrication of a direct ‘true’ 3D object into the volume of the
photosensitive material. Creating reproducible micron-sized
objects with feature sizes of less than 100 nm is attainable, thus
being superior to all other SFF techniques regarding accuracy and
resolution [147].

3.1.2. Current limitations and hydrogel feasibility for laser-based
systems

SLA has already been frequently applied to develop porous
hydrogel-based scaffolds (Table 1). Yu et al. [148] have described
the patterning of 2-hydroxyethyl methacrylate (HEMA) followed by
drying and subsequent rehydration to enable cell adhesion.
Initially, the procedure was applied to create single-layer struc-
tures, however, at present, multiple layers can be superimposed to
generate porous 3D scaffolds. Liu et al. [31] selected poly(ethylene
glycol) diacrylate (PEG-DA) hydrogels to construct 3D scaffolds
layer-by-layer using emulsion masks. In that study, three hydrogel
layers were fused at a resolution of several hundreds of microns.
Interestingly, the pores were interconnected enabling cell survival
through convective flow of culture medium. However, this proce-
dure is time consuming, requires a great number of prefabricated
masks depending on the required shape and is not completely
automated. Therefore, one can discuss whether this can be
considered as a genuine rapid prototyping technique. Lu et al.
[140,149] have adopted the above-mentioned procedure to develop
scaffolds possessing complex internal architectures and spatial
patterns within a Z-range of several hundreds of microns. Another
research group even produced PEG-based scaffolds in the milli-
meter scale [133,150e152]. Several other research groups also
selected PEG-DA as starting material [32,153]. Yasar et al. [32]
successfully plotted 100 mm-sized complex scaffold architectures.
The swelling effects of the PEG-DA, however, prevented the fabri-
cation of highly reproducible samples below 100 mm. Higher
resolutions could be obtained in the presence of UV absorbers since
they prevent the internal reflection of the UV light within the
polymer solution. More recently, the feasibility of plotting cell-
encapsulated hydrogels has been evaluated. Several research
groups have already reported on the cell encapsulation in
photocross-linkable poly(ethylene glycol) (PEG) microgels [31,154].

In addition to synthetic polymers, photocross-linkable
biopolymers including hyaluronic acid (HA) [155] and gelatin [71]
derivatives have already been printed with or without cells using
SLA.

In order to enhance the cell-interactive properties of a material,
different surface functionalization strategies can be elaborated [32].
Luo et al. [156] grafted RGD-containing peptide sequences on the
surface of scaffolds composed of cystein-modified agarose. Han
et al. [142] applied a fibronectin coating on the surface of a PEG-DA
scaffold to improve the attachment of murine marrow-derived
progenitor cells. However, important limitations of laser-based
systems include both the need for photocross-linkable materials
as well as the effect of the applied UV light on the encapsulated
cells [157].

Since shrinkage occurs after post-processing of scaffolds
developed using SLA, a major drawback is its limited resolution
[139]. In addition, due to scattering phenomena of the applied laser
beam, a significant deformation occurs when relatively small
objects are developed. The produced hydrogel is often weak upon
removal and post-curing is often essential.

Therefore, m-SLA was introduced to counter the limitations of
SLA from a resolution point-of-view. For example, Lee et al.
[135e137] developed a hybrid scaffold consisting of an acrylated
TMC/TMP (trimethylane carbonate/trimethylolpropane) frame-
work and an alginate hydrogel for chondrocyte encapsulation. The
encapsulated cells retained their phenotypic expression within the
structure and the scaffold remained mechanically stable up to 4
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weeks after implantation in mice. Barry et al. [158] have combined
direct ink writing (DIW) with in situ photopolymerization to create
hydrogel scaffolds possessing mm-sized features. Using this
approach, another research group even realized submicron range
structures based on PEG-DA [159].

In addition to SLA techniques, SGC also shows potential to be
applied in the development of porous hydrogel-based scaffolds for
tissue engineering, as already indicated before [139]. However, up
to now, no literature data regarding this application and hydrogel
processing can be found.

In order to achieve 3D subcellular resolution during scaffold
development, 2PP can offer a suitable alternative for SLA. Since this
technique was only properly introduced recently, only few reports
can be found in literature regarding the application of 2PP to
produce porous hydrogels. For example, Schade et al. [160] devel-
oped hydrogel-like scaffolds possessing well-defined 3D structures
using a methacrylated polyurethane and PEG-DA as starting
materials. Ovsianikov et al. [161] also selected PEG-DA as starting
material for 2PP scaffolds. More recently, they evaluated the
Table 2
Hydrogel materials explored in nozzle-based systems.

Nozzle-based systems Hydrogel material

3D BIOPLOTTER

3D BIOASSEMBLY TOOL

3D CELL ASSEMBLER

Gelatin/Hyaluronan
Gelatin/Alginate/Fibrinogen
Gelatin/Fibrinogen
Gelatin/Alginate
Gelatin/Chitosan
Collagen-chitosan-hydroxyapatite
Gelatin
Gelatin-ethanolamide methacrylate,
Hyaluronan-methacrylate

PCL hybrid with alginate
Collagen
PCL/PLGA hybrid with acetocollagen,
Gelatin or hyaluronic acid
Gelatin, Agar
PEG-DA/Alginate
PEG-DA
Pluronic F127 AlaL

Pluronic F127

Alginate
Matrigel
Methylcellulose
PEO-PPO-PEO block copolymer
Agarose
Silicone sealant Silicon SE�

Polyurethanes
RPBOD Chitosan
DIW Acrylamide/Glycerol/Water

Polyacrylate latex particles in
Pluronic� F127
PEI-coated silica microspheres
Polyelectrolyte complexes of
polyanions (PAA) and polycations (PEI, PAH
Titanium diisopropoxide bisacetylacetonate
(TIA) and PVP

(M) e LDM Gelatin/Alginate/Fibrinogen
Gelatin/Alginate/Chitosan
Gelatin, Sodium alginate

Gelatin/Chitosan and type I collagen
PAM Polyurethane elastomer (Polytek 74e20)
ROBOCASTING Pluronic� F127
EXTRUDING/ASPIRATION

PATTERNING SYSTEM
Mebiol gel (N-isopropylacrylamide
and polyoxyethyleneoxide)
feasibility to produce porous scaffolds using methacrylamide-
modified gelatin developed in our research group [162]. The
results were very recently published and demonstrated the tech-
niques potential in the processing of biopolymers [163,164].

Table 5 summarizes more technical details on the imple-
mentation of hydrogels in the different RP technologies discussed.

3.2. Nozzle-based systems

3.2.1. Working principles and recent trends of nozzle-based systems
The class of nozzle-based systems is characterized by a wide

diversification (Fig. 2). Fused deposition modelling (FDM), 3D fibre-
deposition, precision extrusion deposition (PED), precise extrusion
manufacturing (PEM), and multiphase jet solidification (MJS) are
techniques based on a melting process. Generally, the melt process
involves elevated temperatures, which are undesirable from the
perspective of scaffold bioactivity [18]. Researchers have therefore
tried to bring forth several other techniques that overcome this
limitation by applying a dissolution process, which is attractive for
Cell encapsulation Reference

û [203]
Adipose-derived stromal
cells (ADSC)
Pancreatic Islets
Hepatocytes

[196,204e206]

û [207]
Hepatocytes [208]
HepG2 [197]
Human intestinal epithelial
cells (Int-407)
NIH 3T3
Chondrocyte cell line (C20A4) [209]
û [193,194]
Hepatocytes
MC3T3-E1 Preosteoblast

[210]

û [211]
û [202]
û [212]
Multipotent stromal
cells (MSCs)

[213]

Bone marrow stromal
cells (BMSCs)

[44,193]

Human fibroblasts
Bovine aortic endothelial
cells (BAECs)
BMSCs
Hepatocytes
Endothelial cells

[44,201,214]

û [179]
û [215]
û [181]
û [158]
û [216]

û [185]

)
û [186]

û [187]

Hepatocytes
Primary rat ADSC

[191]

Schwann cells
Primary neuron cells

[192]

û [167]
û [217]
û [183]
Sf-9 insect cells [190]
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Classification of inkjet printers.
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the processing of hydrogels. Four major nozzle designs have been
described in literature: pressure-actuated, solenoid-actuated,
piezoelectric, and volume-actuated nozzles [166,167]. These nozzle
types can be found in the following systems.

PAM: A technique that resembles FDMwithout the need for heat
is the pressure-assisted microsyringe (PAM) technique, developed
by Vozzi et al. [168]. The setup consists of a 5e20 mm pneumatic-
driven glass capillary syringe that can move in the vertical plane
and deposits material on a substrate. The substrate proceeds in the
planar field relative to the syringe. Transforming jpeg or bitmap
images into a sequential list of linear coordinates easily allows
depositing practically any type of structure in subsequent layers
[169]. Material viscosity, deposition speed, tip diameter and the
applied pressure correlate with the final deposited strand dimen-
sions. The PAM system has been described in several publications
[170,171]. Recently, the fabrication of hydrogel scaffolds was
successful with the PAM method [172,173].

LDM: Proposed by Xiong et al. [174] in 2002, low-temperature
deposition modelling (LDM) found his way as an RP system with
biomedical applications. The key feature of this technique is a non-
heating liquefying processing of materials [174]. Using tempera-
tures below 0 �C, the material solution is solidified when deposited
on the fabrication platform [175]. The material gets extruded out of
a nozzle capable of moving in the XY-plane onto a build platform
movable in the Z-direction. Incorporating multiple nozzles with
Table 4
Hydrogel materials explored in printer-based systems.

Printer-based
systems

Hydrogel material Cell encapsulation Reference

3DP�

Starch/Cellulose/Dextrose û [221,222]
Starch/Cellulose fiber/
Sucrose/Maltodextrin

û [235]

Corn starch/Gelatin/Dextran û [222]
Starch/Polyurethanes/PEG û [221]
PEO/PCL û [226]
PLLGA/Pluronic� F127 û [229]
HA/Cellulose/Starch û [234]
PEG/Collagen/PDL û [227]

Inkjet
printing

PNIPAM, Collagen Bovine aortal
endothelial cells

[236]

Alginate/Gelatin Mouse
endothelial cells
(ATCC CRL-2581)

[224]

Fibrin Rat primary
hippocampal and
cortical cells

[228,230]

Human
microvasculature
endothelial cells
(HMVEC)
different designs into the LDM technique gave existence to multi-
nozzle (low-temperature) deposition modelling (MDM, M-LDM)
[166,167,176,177]. A multi-nozzle low-temperature deposition and
manufacture (M-LDM) system is proposed to fabricate scaffolds
with heterogeneous materials and gradient hierarchical porous
structures by the incorporation of more jetting nozzles into the
system [178]. Biomolecules can be applied in the LDM process to
fabricate a bioactive scaffold directly.

3D-Bioplotter�: This 3D dispensing process, displayed in Fig. 5,
has been introduced by Landers and Mülhaupt in 2000 at the
Freiburg Research Centre [179]. The technique was specifically
developed to produce scaffolds for soft tissue engineering
purposes, and simplifying hydrogel manufacturing. The three-
dimensional construction of objects occurs in a laminar fashion
by the computer-controlled deposition of material on a surface. The
dispensing head moves in three dimensions, while the fabrication
platform is stationary. It is possible to perform either a continuous
dispensing of microstrands or a discontinuous dispensing of
microdots. Liquid flow is generated by applying filtered air pressure
(pneumatic nozzle), or using a stepper-motor (volume-driven
injection (VDI) nozzle). The ability to plot a viscous material into
a liquid (aqueous) medium with a matching density is the key
feature of this process. Low viscous materials in particular benefit
from this buoyancy compensation principle. Since heating is not
required, the system can process thermally sensitive bio-
components, and even cells. Curing reactions can be performed by
plotting in a co-reactive medium or by two-component dispensing
using mixing nozzles. The strand thickness can be modulated by
varying material viscosity, deposition speed (speed in the planar
field), tip diameter, or the applied pressure. Constructs build by this
plotting technique mostly have smooth strand surfaces, which are
not desired for appropriate cell attachment. Therefore, further
surface treatment is required to render the surface favourable for
cell adhesion. Recently Kim et al. [180] adapted the Bioplotting
device with a piezoelectric transducer (PZT) generating vibrations
while plotting PCL. Scaffolds build had a rougher surface and
showed better cell adhesion than the ones build with the conven-
tional setup.

RPBOD: Ang et al. [181] adopted an analogous concept of the 3D-
Bioplotter� technology to develop a robotic dispensing system: the
rapid prototyping robotic dispensing (RPBOD) system. The setup
consists of a one-component pneumatic dispenser.

Robocasting: The laminar deposition of highly loaded ceramic
slurries (typically 50e65 vol.% ceramic powder) to build a 3D
construct using robotics is called robocasting [182]. Unlike the
bioplotting process, in most cases the robocasting setup has
a stationary dispensing head, while the fabrication platform moves
in the planar and vertical field. Inks used for robocasting have to



Table 5
General properties summary of hydrogel compatible RP techniques.

Technique Drawbacks Resolution Porosity Examplea Reference

LASER-BASED
SYSTEMS

SLA Scaffold shrinkage due to water
evaporation

30 mm <90% [71,134]

Incomplete conversion thus post-curing
essential

[132]

Limited resolution [139]
Limited availability of cells, Non-homogeneous
cell distributions, Cytotoxic photoinitiator

[138]

Complex architectures with tunable micro- and
macroscale features are difficult to achieve

[161]

m-SLA Lower resolution than 2PP 1 mm <90% [141]
Complex architectures with tunable micro- and
macroscale features are difficult to achieve

[161]

Post-curing can be necessary

2PP Not feasible to produce large scaffolds < Diffraction limit of
applied light

Not specified [134]
Time consuming adjustment to new materials [95,221]
Scaffold shrinkage due to water evaporation [164]
Diffusion driven polymerization is possible
resulting in cross-linking of non-irradiated material

[164]

NOZZLE-BASED
SYSTEMS

3D BIOPLOTTER
3D BIOASSEMBLY TOOL
3D CELL ASSEMBLER

Low mechanical strength 45e1600 mm < 45e60% [44,179,213]
Smooth surface
Low accuracy
Slow processing
Precise control of properties of materials and
medium (i.e. mechanical properties of the solution
must be high enough to form the 3D structure)
Calibration for new material
Fused horizontal pores mentioned in some cases

RPBOD Idem 3D-Bioplotter
Precise control properties of material and medium

not specified not specified [181]

Requires freeze drying

DIW Low mechanical strength 5e100 mm < 90%
source [237]:

[238,239]
Smooth surface
Low accuracy
Slow processing
Precise control of properties of materials and
medium

(continued on next page)
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Table 5 (continued )

Technique Drawbacks Resolution Porosity Examplea Reference

(M)-LDM Solvent is used 300e500 mm 75e90% [174,240]
Requires freeze drying

PAM Small nozzle inhibits incorporation of particle 7e500 mm 71e94% [170]
Narrow range of printable viscosities
Solvent is used
Highly water-soluble materials cannot be used

ROBOCASTING Precise control of ink properties is crucial 100e150 mm < 45% [241]

EXTRUSION/ASPIRATION
PATTERNING SYSTEM

A small thermal hysteresis of the products is required 141e300 mm Not specified [241]
Limited applicability

PRINTER-BASED
SYSTEMS

3DP
INKJET PRINTING

Mechanical strength: post-processing often necessary 100 mm 33e60% [179,221,222,235]
Powder entrapment [18]
Availability in powder form [221,222,226,229,235]

Pore size: dependent on powder particle size 50e250 mm [17,233,234]
Binder droplet size and accuracy of drop placement
(resolution of the machine)

Droplet volume:
80e130 pL

[218,222,226e228,230]

Clogging of small binder jets [218]

Indirect methods needed (sacrificial molds) 200e500 mm 50% [231,232]

a All example figures are reprinted with permission from the respective publishers as indicated in the source.
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Fig. 5. Scheme of 3D-Bioplotter� dispensing principle. In the 3D-Bioplotter� system,
the nozzle works pneumatically or via volume-driven injection. This also illustrates the
principle of nozzle-based systems in general, where a nozzle is used for the deposition
of material. Key difference with other nozzle-based systems is the ability to plot into
a liquid medium with matching density, thus introducing buoyancy compensation.

COMPRESSED AIR
DISPENSER

VALVE

FAN
HEAT SINK

HEAT PIPE
PELTIER
DEVICE

PC

MIST
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HYDROGEL

HEATER

NOZZLE
3D PLATFORM

Fig. 6. Schematic illustration of an extruding/aspiration patterning setup. The main
difference with other nozzle-based systems is established through the incorporation of
a mist spray, thus preventing desiccation of the fabricated constructs.
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flow under stress and recover enough stiffness such that, when the
stress is released, they can bear both the extruded filament weight
and the weight of successive layers [183,184]. Thus, in contrary to
other SFF techniques, the concept of robocasting relies essentially
on the rheology of the slurry and also on the partial drying of the
deposited layers. Building-up constructs from hydrogel material
alone is therefore not possible using this technique.

Direct ink writing (DIW): Direct ink writing (DIW) or direct write
assemblyenables awidevarietyofmaterials tobepatterned innearly
arbitrary shapes anddimensions [185e187]. Colloidal-based inks are
patterned in both planar and 3D formswith lateral feature sizes that
are at least an order of magnitude smaller than those achieved by
inkjet printing and other rapid prototyping approaches [188]. The
colloidal gels are housed in individual syringes mounted on the z-
axis motion stage and deposited through a cylindrical nozzle
(diameter ranging from 100 mm to 1 mm) onto a moving XY stage.
The inks used in this technique must meet two important criteria.
First, they must exhibit a well-controlled viscoelastic response, i.e.,
theyflow though thedepositionnozzle and then ‘set’ immediately to
facilitate shape retention of the deposited features even as it spans
gaps in the underlying layer(s). Second, they must contain a high
colloid-volume fraction to minimize drying-induced shrinkage after
assembly is complete, i.e., the particle network is able to resist
compressive stresses arising from capillary tension [189].

Extruding/aspiration patterning system: The extruding/aspiration
patterning system offers both extrusion, and aspiration on the basis
of Bernoulli suction. The extrusion and aspiration modes are easily
switchable, leading to a variety of applications in cell patterning by
combining extrusion/aspiration and using a thermo-reversible
hydrogel [190]. This fabrication method makes it possible to
produce cell-loaded scaffolds. One of the advantages is the possi-
bility that cell patterns can be filled into another cell matrix. A
schematic illustration of an extruding/aspiration patterning system
is given in Fig. 6. Nozzle and substrate are placed in a space that
controls temperature and humidity. The nozzle is connected to the
dispenser, which regulates the pressure of the compressed air, and
the valve. The system operates in three modes: extrusion, aspira-
tion, and refilling mode. Closing or opening the valve enables
switching between the modes. In a closed configuration,
compressed air is supplied to the nozzle and the hydrogel is
extruded onto the substrate, or refilled into the aspirated groove. By
opening the valve, the compressed air is directed through the valve,
and the hydrogel solution is aspirated by Bernoulli suction. To
prevent desiccating (to maintain the viability of the cells), a mist
spray is used to create a supersaturated atmosphere inside the box.

The most recent trend is the use of hydrogel systems and cell
encapsulation strategies to fabricate gel/cell hybrid constructs
[191e197]. The 3D-Bioplotter and other similar techniques can be
seen as the most straightforward hydrogel/cell manufacturing
method for designing complex inner and outer architectures,
without the need for an additional support structure. In some cases,
the developed machine contains multiple nozzles with different
designs (sometimes even printer-based). In literature, ‘Cell
Assembler’ and ‘Bioassembly Tool’ are common machine names
that have a similar working principle. Work of Chang et al. [198]
examined the effect of nozzle pressure and size on cell survival
and functionality. A quantifiable loss in cell viability was seen,
which was caused by a process-induced mechanical damage to cell
membrane integrity. It was suggested by the authors that cells
might require a recovery period after manufacturing.

3.2.2. Current limitations and hydrogel feasibility for nozzle-based
systems

An overview of the combination nozzle-based systems/hydrogel
materials is summarized in Table 2. Lately, cell encapsulation
strategies have been frequently applied to fabricate gel/cell hybrid
constructs [191e195]. For each hydrogel material, it is indicated
whether or not cell encapsulation experiments were performed. In
addition, Table 5 comprises the more technical details, focused on
the disadvantages specific for hydrogels. As shown, scaffolds
produced by a 3D-Bioplotter have limited resolution and mechan-
ical strength. Material rigidity was shown to influence cell
spreading and migration speed, as demonstrated by Wong et al.
[199]. Cells displayed a preference for stiffer regions, and tended to
migrate faster on surfaces with lower compliance. In addition, the
3D-Bioplotter technology is a time consuming technique due to the
optimization of the plotting conditions for each different material.
Ang et al. [181] reported 3D chitosan and chitosan-HA scaffolds
using the RPBOD. Solutions of chitosan or chitosan-HA were
extruded into a sodium hydroxide and ethanol medium to induce
precipitation of the chitosan component. The concentration of
sodium hydroxide was identified as important in controlling the
adhesion between the layers. The scaffolds were then hydrated,
frozen and freezeedried. Prior to cell culturing with osteogenic
cells, the scaffolds were seeded with fibrin glue. Drawbacks of this
technique largely follow those of the 3D-Bioplotter and analogues.
The inks used in the direct ink writing (DIW) have the disadvantage
that the used hydrogel systems must satisfy the two important
criteria as mentioned previously.



Fig. 7. Schematic representation of a typical 3DP� setup. A roller spreads a thin layer
of polymer powder over the previously formed layer, and is subsequently solidified by
the spatially controlled delivery of a liquid binder.
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Khalil et al. [166] developed a multi-nozzle low-temperature
deposition system with four different micro-nozzles: pneumatic
microvalve, piezoelectric nozzle, solenoid valve and precision
extrusion deposition (PED) nozzle. The system consisted of an air
pressure supply. Multiple pneumatic valves were simultaneously
operated for performing heterogeneous deposition in the devel-
opment of the 3D scaffold. With this technique, multi-layered cell-
hydrogel composites can be fabricated [194]. Hydrogels have also
been processed with the PAM technique [172,173]. Of the 3D rapid
prototyping micro-fabrication methods available for tissue engi-
neering, PAM has the highest lateral resolution. Recently, it has
been demonstrated that the performance of this method is
comparable to that of soft lithography [200]. However, capillaries
with a very small diameter require careful handling to avoid any tip
breakage. In addition, pressures are needed to expel the material
from a small orifice. Robocasting relies on the rheology of the slurry
and partial drying of the deposited layers. This implies that a pure
hydrogel composition cannot be processed via this particular
technique, being the most fundamental drawback of the technique.
A last nozzle-based system is the extruding/aspiration patterning
system. One of the advantages is that its setup is favourable for cell
encapsulation purposes and the fact that cell patterns can be filled
into another cell matrix. However, the hydrogel materials require
a small temperature hysteresis, so it has limited applicability.

Concerning the nozzle-based systems in rapid prototyping
of hydrogels, several challenges need to be addressed. Looking at
the limited range of materials, the following topics should be
addressed: optimal scaffold design, bioactivity of the scaffold as
well as the issues of cell seeding and encapsulation possibilities.
So, future development will need to focus on the engineering
of new materials, the scaffold design and the input of cell
biologists. Keeping this in mind, rapid prototyping still remains
a promising technique as a methodical interface between tissue
and engineering.

Concerning (non home-made) RP devices in general, high
equipment purchase costs can be considered a substantial disad-
vantage. Therefore, it is also noteworthy to mention that very
recently open-source low-budget nozzle-based systems have found
their way to this research domain. A hydrogel compatible example
is the Fab@Home ($1000e3000) system that was developed at
Cornell University. Cohen et al. [201] tested a proof-of-concept for
in situ repair of osteochondral defects using alginate as scaffolding
material. Lixandrao et al. [202] demonstrated the feasibility of
complex architecture scaffolding with the Fab@Home. They con-
structed aortic valves based on a PEG-DA/alginate blend.

3.3. Printer-based systems

3.3.1. Working principle and recent trends of printer-based systems
In literature, ‘printing’ is often used as a general term for both

the construction of a scaffold or to indicate printer-based systems.
To differentiate between both, we define the latter as
manufacturing techniques that implement inkjet technology. Inkjet
printers can be divided in drop-on-demand or continuous ejection
types. In drop-on-demand systems, electrical signals are used to
control the ejection of an individual droplet. In continuous-drop
systems, ink emerges continuously from a nozzle under pressure.
The jet then breaks up into a train of droplets whose direction is
controlled by electrical signals [218]. Both drop-on-demand and
continuous-jet systems can be operated with droplets ranging in
size from 15 to several hundred microns [218]. Many commercial
(adapted) printers fall in the former category, andwill only eject ink
when receiving a demand signal from the computer. Table 3 clas-
sifies the existing inkjet printers (modified from Nakamura et al.
[219]). Like the nozzle-based systems, building a construct occurs in
an additional computer-controlled layer-by-layer sequence with
deposition of material.

3DP�: Prof. Sachs from the Massachusetts Institute of Tech-
nology (MIT) introduced the 3D Printing� technology [220]. It is an
example of a solid-phase RP technology. 3D Printing can be used to
fabricate parts in a wide variety of materials, including ceramic,
metal, metal-ceramic composite and polymeric materials. 3D
printing is the only of the solid-phase RP techniques compatible
with hydrogel manufacturing. A scheme of a typical 3DP� setup is
given in Fig. 7. The technique employs conventional inkjet tech-
nology. Theworkflow can be described in 3 sequential steps: (1) the
powder supply system platform is lifted and the fabrication plat-
form is lowered one layer; (2) the roller spreads the polymer
powder into a thin layer (excess powder falls in an overflow vat),
and; (3) an inkjet print head prints a liquid binder that bonds the
adjacent powder particles together. The binder can dissolve or
swell the powder particles, causing bonding via the inter-diffusion
of polymer chains or via infiltration of the binder into the powder
[221]. Cycling steps 1e3 fabricates a 3D object. A key requirement
for 3D printing is the availability of biocompatible powder-binder
systems [17]. The powder utilized can be a pure powder or
surface-coated powder, depending on the application of the scaf-
fold. It is possible to use a single, one-component powder, or
a mixture of different powders blended together [18]. After the
finished construct is retrieved, any unbound powder is removed,
resulting in a complex three-dimensional part. Basic requirements
that the binder system must satisfy: (i) the binder solution must
have a high binder content while still having a low viscosity so that
it is capable of being deposited by the print head; (ii) minimal
conductivity may be required for continuous-jet printing heads;
(iii) the binder must dry or cure rapidly so that the next layer of
particles can be spread [218].

3D Printing has four steps that can limit the rate of the process:
the application of the powder layers, the printing of the binder, the
infiltration of the binder into the powder and the drying of the
binder [218]. An important advantage of powder-based systems is
the production of rougher surfaces, which may enhance cell
adhesion [17].

Zcorp developed a 3D printer (Z402) that uses natural polymers
as well as plaster of Paris in combination with a water-based ink
[221,222]. This opens perspectives towards hydrogel
manufacturing. A recent detailed review on 3DP� concerning all
process development steps, such as powder-binder selection and
interaction, is given by Utela et al. [223].

In 3DP, control over the geometry is realized by two distinct
issues: the minimum attainable feature size, and the variability of
part dimensions [218]. Both depend strongly on the binder
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dropletepowder particle interactions. Factors controlling the
interaction of powder and binder include: powder material,
powder surface treatment, powder size and size distribution,
powder shape, powder packing density, binder material, binder
viscosity, binder surface tension, droplet size, droplet velocity,
temperature of the powder and binder, and ambient temperature
[218]. Factors that determine the final object dimensions are: local
and accumulative accuracy of deposited layer thickness, accuracy of
drop placement, reproducibility of the spread of the printed
droplets, and reproducibility of the dimensional changes that
accompany binder cure. Sometimes, resolution of the machine is
mentioned. Resolution in this context refers to the smallest pores
and the thinnest material structures that are obtainable with the
equipment [218].

Inkjet printing: This printer-based subclass comprises all liquid-
phase inkjet technologies. It can vary from setups similar to the
3DP� system in which the powder bed is replaced by a liquid
hydrogel precursor [224], or systems that use direct inkjet writing
[13,225]. In the case of direct inkjet writing, the construct is build-
up by the deposited liquid itself.

3.3.2. Current limitations and hydrogel feasibility for printer-based
systems

Printer-based systems can perhaps be regarded as the least
hydrogel/cell suitable of the systems that allow hydrogel process-
ing. Tables 4 and 5, summarize the hydrogel feasibility respectively
limitations towards hydrogel manufacturing. Wu et al. [226]
described the use of polyethylene oxide (PEO) and poly-ε-capro-
lactone (PCL) as matrix materials and a 20% PCL-LPS/chloroform
binder solution to create a 3D device for controlled drug release.
Top and bottom layer of the tabular device was made out of slowly
degrading PCL, while the interior layers were composed of PEO
bound by printing binder solutions. The local microstructure of the
device could be controlled by either changing the binder or by
changing the printing parameters (velocity). Typical powder
particle size ranged from 45 to 75 mm for PCL and 75e150 mm for
PEO. The binder droplets had a diameter in the order of 60e80 mm.
After 20 h, significant swelling of the PEO was experimentally
observed.

Landers et al. [179] studied the use of water-soluble polymers,
which are bonded together by means of water-based saccharide
glues. Although the choice of powders and the corresponding
adhesives appears to be unlimited, this technology requires post-
sintering or post-curing to improve mechanical as well as envi-
ronmental stability.

Lam et al. [222] developed a blend of starch-based powder
containing cornstarch (50 wt.%), dextran (30 wt.%) and gelatin
(20 wt.%). Distilled water was used as a suitable binder material.
Cylindrical scaffolds (Ø 12.5 � 12.5 mm) were produced having
either cylindrical (Ø 2.5 mm) or rectangular (2.5 � 2.5 mm) pores.
Using water as the binder means that the problem of a toxic
fabrication environment was eliminated and the problem of
residual solvent in the construct was solved. Other advantages of
using a water-based binder include the possibility to incorporate
biological agents (e.g. growth factors) or living cells. Post-
processing of the scaffolds was necessary to enhance the strength
of the scaffolds and increase the resistance against water uptake.
The scaffolds were dried at 100 �C for 1 h after printing and infil-
trated with different amounts of a copolymer solution consisting of
75% poly(L-lactide) and 25% PCL in dichloromethane.

Sanjana et al. [227] reported on the use of inkjet printing to
fabricate neuron-adhesive patterns such as islands and other
shapes using poly(ethylene) glycol (PEG) as cell-repulsive material
and a collagen/poly-D-lysine (PDL) mixture as cell-adhesive mate-
rial. They worked with a positive relief: PEG used as background
and anti-fouling material was bonded covalently to the glass
surface while the collagen/PDL mixture was used as the printed
foreground and cell-adhesive material. They also suggest that the
inkjet printing technique could be extrapolated to building 3D
structures in a layer-by-layer fashion.

Xu et al. [228] use the inkjet printing technology for the
construction of three-dimensional constructs, based on fibrin gel.
Fibrin was used as a printable hydrogel to build 3D neural
constructs. The fibrin is formed by the enzymatic polymerization of
fibrinogen by addition of thrombin and CaCl2. First, a thin sheet of
fibrinogen was plated and subsequently, thrombin droplets were
ejected from the print cartridge onto the pre-plated fibrinogen
layer. Fibrin gel formation was observed immediately after
thrombin ejection. Subsequently, NT2 neurons were printed on the
gelled fibrin. The whole procedure was repeated 5 times, resulting
in a 3D neural sheet.

Koegler et al. [229] described the fabrication of 3DP scaffolds
based on poly(L-lactide-co-glycolide). Surface chemistry of these
scaffolds was modified by reprinting the top surface with a solution
of Pluronic F127 in CHCl3.

Cui et al. [230] reported on the fabrication of micron-sized fibrin
channels using a drop-on-demand polymerization. A thrombin/
Ca2þ solution together with human micro-vascular endothelial
cells (HMVEC) cells was used as ‘bio-ink’ and sprayed by the inkjet
technology onto a fibrinogen substrate. They suggested that these
constructs show potential in building complex 3D structures.
Examples of the direct use of printer-based systems together with
hydrogels are rather limited. In some cases, the use of an indirect
system is mentioned.

Sachlos et al. [231] use an indirect approach to produce collagen
scaffolds with predefined and reproducible complex internal
morphology and macroscopic shape by developing a sacrificial
mould, using 3D printing technology. This mould is then filled with
a collagen dispersion and frozen. The mould is subsequently
removed by chemical dissolution in ethanol and a solid collagen
scaffold was produced using critical point drying.

Yeong et al. [232] also utilized a similar indirect approach to
fabricate collagen scaffolds. In addition, they investigated different
drying routes after removal of the sacrificial mould with ethanol.
The effects of a freeze drying process after immersion of the scaf-
fold in distilled water and critical point drying with CO2 reflected
onto dimensional shrinkage, pore size distribution andmorphology
in general.

Boland et al. [224] described the use of the inkjet printing
technique for the construction of synthetic biodegradable scaffolds.
They used a 2% alginic acid solution, a liquid that is known to cross-
link under mild conditions to form a biodegradable hydrogel scaf-
fold. The ink cartridge was filled with 0.25 M calcium chloride
(CaCl2), which is known to promote the cross-linking of the indi-
vidual negatively charged alginic acid chains resulting in a 3D
network structure. This cross-linker was printed onto liquid algi-
nate/gelatin solutions.

The biggest obstacles for RP technologies, thus also printer-
based systems, are the restrictions set by material selection and
aspects concerning the design of the scaffold’s inner architecture.
Thus, any future development in the RP field should be based on
these biomaterial requirements, and it should concentrate on the
design of new materials and optimal scaffold design [18]. The
selected scaffold material must be biocompatible, compatible with
the printing process, and it must be easilymanufactured in the form
required (powder or liquid) [233]. In the case of powder material,
the particle sizemust be controllable. Another issue is the sterility of
the manufacturing process and products and their ability to with-
stand sterilization processes [17]. Off course, this plays a pivotal role
for all systems when embedding cells during the process.
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Some limitations are causedbymaterial trapped in small internal
holes. These trapped liquid or loose powder materials may be
difficult or even impossible to remove afterwards, and in some cases,
these residues may even be harmful to cells and tissues. Experi-
mental results show that the smoother the surface generated, the
easier the removal of trappedmaterial [17,18]. Smoother surfaces are
on the other hand less desirable for cell adhesion purposes.

Limitations of 3DP include the fact that the pore sizes of fabri-
cated scaffolds are dependent on the powder size of the stock
material. As such, the pore sizes available are limited to smaller
pore values (<50 mm) widely distributed throughout the scaffold.
More consistent pore sizes, including larger pores, can be generated
by mixing porogens (of pre-determined sizes) into the powder
prior to scaffold fabrication. However, incomplete removal of the
porogens is sometimes observed due to incomplete leaching. The
mechanical properties and accuracy of 3DP fabricated scaffolds are
other considerations that need to be addressed [234].

Despite the idea of using a water-based ink in order to eliminate
a toxic fabrication environment, and thus creating an opportunity
to incorporate biological agents or even living cells, toxic post-
processing of the constructs is often needed to improve the
mechanical properties. Suwanprateeb [235] described a double
infiltration technique to increase the mechanical properties of
natural polymers fabricated by three-dimensional printing using
a water-based binder. The 3DP parts were porous in nature since
the powder bed was only lightly packed during the process and
only the surface of the powder granules was connected by a binder.
Porosity typically ranged between 50 and 60%. To enhance the
performance of the 3DP parts based on a mixture of 40 wt.% starch,
15 wt.% cellulose fibre, 25 wt.% sucrose sugar and 20 wt.% malto-
dextrin, infiltration by some other material was performed. The
infiltration material used in this experiment was a heat-cured
dental acrylate prepared by mixing triethylene glycol dimethacry-
late, 2,2-bis[4(2-hydroxy-3-methacryloyloxypropyloxy)-phenyl]
propane and a polyurethane dimethacrylate in a 40:40:20 wt.%
proportion. Benzoylperoxidewas used as initiator. After infiltration,
the specimen was cured at 105 �C for 30 min. From the results, it
was found that double infiltration and curing of 3DP samples
increased the performance of specimens in wet conditions.

Pfister et al. [221] described the fabrication of biodegradable
polyurethane scaffolds by 3D Printing. In this case, the poly-
urethane formation is the post-treatment step. Commercially
Table 6
Classification of the most frequently applied hydrogel solidification mechanisms in RP p
available powder ZP11 (a powder blend of starch, short cellulose
fibres and dextrose as a binder) was processed by the printing of an
aqueous ink, which activates the dextrose binder. The resulting
objects were very fragile and highly water-soluble. Therefore, the
authors selected an additional post-treatment step involving infil-
tration and partial cross-linking with lysine ethylester diisocyanate.
The starch polyols react with the isocyanate to form network
structures. The obtained structures exhibited much improved
mechanical stability. Because of the presence of starch incorporated
in the network, the structures could swell and the resulting lysine-
based polyurethane networks were biodegradable upon exposure
to water and body fluids.

3.4. Preserving the mechanical integrity of RP processed hydrogels

As previously mentioned, the mechanical properties of a certain
biomaterial play a partial, although crucial role in its potential
success as a scaffolding material. More specific, it has been gener-
ally accepted that in designing a proper scaffold biomaterial, one
must strive to translate the mechanical characteristic features of
the target tissue into the mechanical features of the fabricated
construct. For instance, hard tissue regeneration requires strengths
of 10-e1500 MPa, while soft tissue strengths are typically located
between 0.4 and 350 MPa [242]. As a part of it, preserving the
mechanical integrity of the scaffold contributes substantially to the
completion of this demand. The latter appears to be of utmost
importance with respect to hydrogels and will for that reason be
discussed in this subsection. Moreover, it is possible to enhance the
control over not only the mechanical properties, but even the
biological effects and degradation kinetics by hierarchical design of
scaffolds with micron to millimeter features [234]. In the case of
hydrogel performance, degradation rates are controlled by hydro-
lysis, enzymatic reactions or simply by dissolution of the matrix
(e.g. ion exchange in Ca2þ cross-linked alginate systems).

The process of obtaining a construct with suitable strength
starts with the solidification and simultaneous shaping of the
material in a certain pattern. An overview summarizing the most
frequently applied and different solidification mechanisms is given
in Table 6. Although our discussion focuses on hydrogel materials,
other materials could easily be incorporated into this scheme.

The application of natural as well as synthetic hydrogels in TE
and as cell embedding materials has been a review topic of several
rocessing.
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authors [12,26,33,66]. The solidification or gelling mechanisms of
hydrogels include inherent phase transition behaviour and cross-
linking (ionic or covalent) approaches. Regarding the former
mechanism, careful control over the printing temperatures can
provide for some hydrogels a phase transition from solution to gel
state, in particular for polymers with a lower critical solution
temperature (LCST) behaviour (e.g. Pluronic� F127). However, this
behaviour is reversible. The formation of an ionically cross-linked
network through the use of multivalent counterions, e.g. sodium
alginate and Ca2þ ions, provides more control over the mechanical
integrity. Nevertheless, these ions could be leached out in long-
term culture, or even be exchanged by other ionic molecules,
compromising the control over the construct properties. Therefore,
in most cases, covalent network formation is required in order to
precisely enhance the mechanical stability and reproducibility of
the constructs. The light-induced radical cross-linking of mono-
mers and/or prepolymer solutions have established a quasi
monopoly as a hydrogel solidification strategy in combination with
RP fabrication schemes. In the case of the laser-based systems, this
is even the fundament on which the respective techniques are
based and those are striking examples of one-step cross-linking
approaches. The chemical structures of some well-known photo-
initiators are shown in Fig. 8. The first structure (Fig. 8(A)) is an
example of a D-p- chromophore, known for its high sensitivity in
2PP processes [243,244]. The p-part is a conjugated backbone
symmetrically substituted at the ends by electron-donating D-
parts. Fig. 8(B) represents the chemical formula of Irgacure� 2959
(I2959), a commonly applied photoinitiator thanks to its high
biocompatibility. It is known to absorb light in the UV range. The
last structure represents camphorquinone (CQ; Fig. 8(C)), an initi-
ator with many dental applications and visible light working range.

Different reactive thermo-sensitive thiolated systems were
developed in the past [245e252]. Thiol, vinyl or allyl ether poly-
merization display some advantages: mild reaction conditions,
photoinitiator not necessary, low or even no oxygen inhibition
effects, fast process, forming of cross-linked networks with good
physical and mechanical properties [253] and degradable in
(mimicked) physiological conditions [254].

The so-called ‘tandem reaction’ consists of two steps. The first
step is the occurrence of rapid gelation kinetics. The second step
involves a covalent curing based on the Michael-type addition. This
technique allows to create covalently bonded hydrogels in
N
N

CH3

CH3

OH

O

OH

O

CH3

CH3
H3C

O

O

A

CB

Fig. 8. Some typical photoinitiators used for (A) 2PP e an example of a strongly
absorbing two photon absorbing D-p-D chromophore e, (B) general UV curing e
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combination with functional cells under physiological conditions,
with no side reactions with bioactive molecules [255].

When performing cross-linking in general, be it radical (light,
redox, temperature induced) or non-radical (enzymatic, ionic,
carbodiimide, glutaraldehyde, genipin,.), the toxicity of the cross-
linkers should be carefully considered. This aspect is of crucial
importance towards the success of a construct. For instance,
comparing the biocompatibility of genipin and glutaraldehyde as
a way to non-radically cross-link gelatin demonstrated the cyto-
toxic effect of glutaraldehyde and to a lower extent that of genipin
[34,192]. A possible aldol condensation cross-linking mechanism
for genipin was proposed by Liang et al. [256] and the authors also
provided evidence for its better biocompatibility compared to
carbodiimide cross-linking with 1-ethyl-3-(3-dimethyl amino-
propyl) carbodiimide (EDC). However, genepin has only few
applications because of its high cost, and dark blue staining, which
could interfere with cell characterization techniques [192].
Thrombin, on the other hand, did not show any substantial adverse
effects [192,204]. Next to those non-radical cross-linking mecha-
nisms, radical cross-linking induced through light irradiation is
accepted as a common strategy. Cytotoxicity studies of several
frequently used UV and visible light initiating systems have been
performed [257,258]. CQ at concentrations �0.01% (w/w) and low
intensity irradiation (w60 mW cm�2; 470e490 nm) appeared to
have less toxic effects than isopropyl thioxanthone (ITX) as visible
light initiator. Another promising visible light initiator that absorbs
at 512 nm is eosin Y [259,260], although up to date no relevant
cytotoxicity studies have been performed. Out of three different
Irgacure� initiators, it was the I2959 initiating system
(w6 mW cm�2; 365 nm) that held the greatest potential at
concentrations below 0.05% (w/w). Additionally, it was also found
that those cytotoxic effects varied depending on the cell types
[258,261]. Performing radical cross-linking reactions without the
use of either visible or UV light can also be mediated through the
use of redox systems. Duan et al. [262] reported on the negative
cooperative effect of a water-soluble redox initiating system, con-
sisting out of ammonium persulfate (APS) and N, N, N0, N0-tetra-
methylethylenediamine (TEMED), on NIH/3T3 fibroblasts. The
system was used to trigger PEG-DA polymerization. Redox initi-
ating systems have been extensively reviewed before [263].

In other cases, the formation of chemical hydrogels can only be
attained after scaffold fabrication. Post-fabrication UV curing of
a physically cross-linked photosensitive Pluronic F127-Ala-L
construct with Irgacure� 2959 as initiator was for instance per-
formed by Fedorovitch et al. [213] in order to acquire a chemical
network. This example directly serves as an easy template into
attainingmultiple-step cross-linking.Whenworkingwith blends of
different hydrogels and combinations of physical as well as chem-
ical network formations, multiple-step cross-linking systems of
higher complexity are needed. Very recently, Xu et al. [196]
demonstrated a fascinating state-of-the-art example of such an
approach by blending gelatin, sodium alginate and fibrinogen with
cells and stepwise cross-linking of the sodium alginate with a CaCl2
solution and the fibrinogen with a thrombin solution. The gelatin
component served as a necessary co-material blend in to provide
sol to gel phase transition during the fabrication process [192].
Other examples can be found in the work of Xu et al. [204], Zhang
et al. [203], Skardal et al. [197] and, Yan et al. [205].

4. Fundamentals on rapid prototyping in scaffold-free tissue
engineering

In general, the application of scaffolds in a TE approach is
straightforward, but still subject to some challenges [264,265].
These can be divided in two distinct categories: (i) complications



Fig. 10. Basic concept of bioprinting bio-ink particles into bio-paper (hydrogel) sheets.
The bio-ink particles are deposited in a tubular geometry (left). After the deposition is
finished, the construct is transferred to a bioreactor to fuse the bio-particles and
further maturation made possible (right).
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posed by host acceptance (immunogenicity, inflammatory
response, mechanical mismatch), and; (ii) problems related to cell
cultures (cell density, multiple cell types, specific localization). It is
surprisingly interesting that, during embryonic maturation, tissues
and organs are formed without the need for any solid scaffolds
[266]. The formation of a final pattern or structure without exter-
nally applied interventions, in other words the autonomous orga-
nization of components, is called self-assembly [267,268]. A
premise concerning the self-assembly and self-organizing capa-
bilities of cells and tissues is worked out in the field of scaffold-free
TE. This idea poses an answer to the immunogenic reactions and
other unforeseen complications elicited through the use of scaf-
folds. One way of implementing this self-assembly concept is the
use of cell sheet technology, which was demonstrated by L’Heureux
and colleagues for the fabrication of vascular grafts [269,270]. In
a similar way, the group of Okano engineered long-lasting cardiac
tissue based on cell sheet strategies [271e273]. Remarkably, some
have already reached clinical trials [273,274]. An alternate approach
was selected by McGuigan and Sefton, who encapsulated HepG2
cells in cylindrical sub-millimetre gelatin modules, followed by
endothelializing the surfaces [34]. A construct with interconnected
channels that enabled perfusion was generated through random
self-assembly of the cell/hydrogel modules. However, the imple-
mentation of RP technologies offers another even more fascinating
perspective on scaffold-free TE, and is commonly termed ‘bio-
printing’ or ‘organ printing’.

We define organ printing as the engineering of three-
dimensional living structures supported by the self-assembly
and self-organizing capabilities of cells delivered through the
application of RP techniques based on either laser [275e278],
inkjet [219,228,230,236,279e284], or extrusion/deposition
[193,197,285e290] technology. An emerging laser-based RP tech-
nique called biological laser printing (BioLP) stems from an
improved matrix assisted pulsed laser evaporation direct write
(MAPLE DW) system. The improvement is realized by incorporation
of a laser absorption layer and thus eliminating the direct interac-
tion with the biological materials. The principle is illustrated in
Fig. 9. Prior to laser exposure, a cell suspension layer is formed on
top of the absorption layer. Then, a laser beam is focused on the
interface of the target, which causes a thermal and/or photome-
chanical ejection of the cell suspension towards the substrate [275].
Target and substrate are both able to move in the planar field.

The workflow of inkjet or extrusion-based bioprinting can be
represented by Fig. 10. In short, balls of bio-ink are deposited in
well-defined topological patterns into bio-paper sheets. The bio-
ink building blocks typically have a spherical or cylindrical shape,
and consist of single or multiple cell types. Several bio-ink
Fig. 9. Schematic illustration explaining the working principle of BioLP. A focussed
laser beam initiates material transfer towards the substrate. Interestingly, a laser
absorption layer prevents direct interaction between the laser and the biological
materials. The scheme was reused from [277] with the permission from Springer.
preparation methods have been described [264,266,285,289]. In
a post-processing step, the construct is transferred to a bioreactor
and the bio-ink spheres are fused. The bio-paper, a hydrogel, can be
removed after construction if required. Bio-printers can either have
a jet design or work like a mechanical extruder [102,291]. This
implies that several RP apparatuses described in the previous part
can serve as a bio-printer (e.g. the Bioassembly Tool, 3D-Bio-
plotter�,.), if sterile conditions can be acquired. In the case of
inkjet technology, individual or small cell clusters are printed.
Despite the advantageous speed, versatility and cost, high cell
densities are difficult to obtain and considerable cell damage is
induced [264,291]. On the other hand, extrusion-based bio-printers
are more expensive but offer a more gentle approach towards cells.

In this context, hydrogels are employed as bio-paper and only
provide a temporary support for the deposited bio-ink particles. In
other words, the bio-paper is clearly different from scaffolds used in
classical scaffold-based TE. Arai et al. [292] made use of a hydrogel
consisting of 2.0% CaCl2, 20 wt.% PVA and 3wt.% hyaluronan for the
deposition of alginate based bio-ink particles. In most cases, this
bio-paper hydrogel will have a sheet-like design (e.g. Fig. 10). For
instance, Boland et al. [236] made use of thermo-sensitive gels to
generate sequential layers for cell printing. The group developed
a cell printer, derived from commercially available inkjet printers
that enable to place cells in positions mimicking their spatial
location in an organ [280]. The printer can put up to nine solutions
of cells or polymers into a specific place by the use of specially
designed software, and print two-dimensional tissue constructs.
Extending this technology to three dimensions is performed by the
use of thermo-reversible gels. These gels were a fluid at 20 �C
and a gel above 32 �C and serve as bio-paper on which tissue
structures can be printed. Dropping another layer of gel onto
the already printed surface could generate successive layers.
The thermo-sensitive gel used for the experiments was a poly
[N-isopropylacryamide-co-2-(N,N-dimethylamino)-ethyl acrylate]
copolymer in a concentration of 10 wt.% polymer in cold, deionized
water.

However, collagen used in a sheet-like design appeared to have
integrated into the final structure, posing difficulties in its removal
[289]. Depending on the target tissue design, the bio-paper can also
have other geometries. For instance, agarose rods were plotted and
easily removed after post-printing fusion of a multicellular
construct in order to fabricate tubular constructs (Fig. 11) [285].
Agarose, being an inert and biocompatible hydrogel, is not
remodelled by the cells and can easily be removed after fusion of



Fig. 11. Bioprinting tubular structures with cellular cylinders. (A) Designed print template (B) Layer-by-layer deposition of agarose (blue) cylinders and multicellular pig SMC
cylinders (white). (C) The bio-printer outfitted with two vertically moving print heads. (D) The printed construct. (E) Engineered pig SMC tubes of distinct diameters resulted after 3
days of post-printed fusion (left: 2.5 mm OD; right: 1.5 mm OD). Pictures were reprinted from [287] with permission from Elsevier. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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the bio-ink. In situ cross-linkable synthetic ECM (sECM) mimetic
hydrogels formed by co-cross-linking PEG-DA and modified hya-
luronic acid (HA)/gelatin to the corresponding thiolated dithio-
propionylhydrazide (DTPH) derivatives were developed as bio-
paper by Mironov et al. [291]. Other examples of hydrogels that
served as bio-paper include fibrin, Matrigel�, fibrinogen, PNIPAM
and polyethylene glycol tetra-acrylates [230,236,277,286].

It is somewhat unclear as to whether the fabrication of cell/gel
hybrid constructs, which has already been brought up in the
previous part, falls under the category of bioprinting or if it can be
regarded, as it is our understanding, as a bridge between pure
scaffold-based and pure scaffold-free TE strategies. For instance,
Skardal et al. [197] methacrylated HA and gelatin, in order to
fabricate tubular photocross-linkable constructs from partially pre-
cross-linked hydrogels and cells suspended within. The importance
that is correlated to the biomaterial(s) used, as is clarified in Fig. 12,
notes the primary distinction with pure scaffold-free TE. Xu and
Fig. 12. ADC cells, cultured with EGF, in a 3D gelatin/alginate/fibrin scaffold to differentiat
endothelial cells in green and PI for nuclear in red. (A) ADC cells within a gelatin/alginate
permission from Elsevier. (For interpretation of the references to colour in this figure legen
colleagues made 3D cell/gel hybrid scaffolds from ADS cells and
gelatin/alginate/fibrin hydrogels to model the metabolic syndrome
(MS) in 3D [196]. Their work revealed the potential use of this 3D
physiological model for drug discovery and the use of fibrin as an
effective material to regulate ADC cell differentiation and self-
organization into adipocytes and endothelial cells. Nevertheless
the importance appointed to the biomaterial, cells are being
encapsulated within the structure, and therefore this approach
deflects somewhat from pure scaffold-based engineering. May be
the future shows that this state-of-the-art TE concept and crossover
approach of the two main distinct TE premises leads to some
fascinating results and research.

5. Future directions

A couple of interesting emerging trends tend to bring scaffold-
based TE on the next level. First of all, the implementation of
e into endothelial cells and adipocytes. (A, B) Immunostaining with mAbs for mature
/fibrin construct, and (B) without fibrin. The pictures were reprinted from [197] with
d, the reader is referred to the web version of this article.)
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gradient techniques, in the general sense, seems to provide some
promising approaches. The utilization of blends layed down the
foundation of working withmaterial gradients. Via this way, a more
precise mimicking of the ECM composition and mechanical prop-
erties will be possible, with spatial alterations throughout the
scaffold. Of course, this can be extended towards different and
multiple cell types, biomolecules, growth factors, etc., deposited in
predefined patterns throughout the scaffold. Furthermore, gradi-
ents applied on the deposited scaffold pattern in itself (the
deposited strand configuration) offers interesting alternatives to
alter the mechanical properties of the construct. Although some
authors already performed some initial experiments [167,192], the
applicability of such approaches needs to be investigated in depth
[167,191].

Second, combining multiple fabrication methods to obtain
a single construct appears to be useful. For instance, combining
electrospinning (wnanoporosity) and bioplotting (wmicroporosity)
for theproductionof a single scaffoldwasdemonstrated byKimet al.
[293]. The combined effect of different techniques will most likely
exhibit positive cooperative effects. Thus, instead of focussing on the
exploitation of one single technique, it would be most fruitful to
combine the positive effects of different techniques into one oper-
ation procedure.

Last but definitely the most fascinating trend, material scientists
should incorporate the knowledge of engineers into the designing
step of the construct. This last item is somewhat related to the first
one, with a clear, distinct focus on the mechanical properties. By
means of finite element modelling, predicting the mechanical
properties of the construct can be handful. More importantly,
adjusting the (predicted) mechanical properties of a model simply
by varying the geometrical design of the material offers an inter-
esting path to match its expected properties and the desired
properties. The principles, advantages, and possible applications of
this so-called Bio-CADmodelling in TE have been reviewed in 2005
by Sun et al. [224,294]. In the last couple of years, more and more,
bone-engineering scientists follow this methodology [295e297].
However, in the case of soft tissue engineering and/or tailored
hydrogel scaffolds, this has not yet been intensively explored.
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