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Spontaneous reporting is a crucial component of post-marketing drug

safety surveillance despite its significant limitations. The size and

complexity of some spontaneous reporting system databases represent a

challenge for drug safety professionals who traditionally have relied

heavily on the scientific and clinical acumen of the prepared mind.

Computer algorithms that calculate statistical measures of reporting

frequency for huge numbers of drug-event combinations are increasingly

used to support pharamcovigilance analysts screening large spontaneous

reporting system databases. After an overview of pharmacovigilance and

spontaneous reporting systems, we discuss the theory and application of

contemporary computer algorithms in regular use, those under

development, and the practical considerations involved in the

implementation of computer algorithms within a comprehensive and

holistic drug safety signal detection program.
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Introduction
It is well accepted that safety information about medicinal products will sometimes only come to

light after market approval of a drug [1]. Since the 1960s, surveillance systems have been in place

to capture such adverse drug reactions (ADRs). ADR signal detection in post-marketing surveil-

lance (PMS) has largely been based on astute observations and analysis of spontaneously reported

suspected ADRs by expert clinical reviewers [2,3]. With increasingly large databases that strain the

capacity of clinical reviewers, quantitative methods have been increasingly used [4–6]. Recent

research has predominantly focused on methods for optimising the highlighting of single drug-

single ADR combinations for clinical review, based solely on spontaneous reported data, although

historically pharmacovigilance has used multiple methods and data streams, including screening

for increases in reporting rates [7,8]. In addition, there are applications for screening of hospital

data [9] and also other adverse event monitoring systems for signal detection in primary care

internationally high profile findings.
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[10,11]. Some preliminary research has also been done on high-

lighting of three way dependencies or interactions (e.g. drug–drug-

event associations) representative of more complex safety phenom-

ena [12–14]. In this article we focus on methods currently used

predominantly in the analysis of spontaneous reports of possibly

causal associations between a single drug and a single AE, but also

discuss the methods that have been used for the detection of larger

groups of related concepts including interactions and syndromes in

these types of data. In addition to surveillance and screening of post-

marketing data, formal epidemiological analysis using well-defined

questions to illuminate causality and estimate magnitude of drug

effects is a standard responseelementafter a signal is detected. These

formal analyses include cohort and case control studies and newer

methods, such as case crossover studies and are performed on both

established datasets and datasets created to address specific research

questions (for more details please see Strom [15]). This review will be

restricted to surveillance methods.

The application domain: pharmacovigilance
Pharmacovigilance (PhV), has been defined as: ‘‘The science and

activities relating to the detection, assessment, understanding and

prevention of adverse effects or any other drug-related problem’’

[16]. It has often been used synonymously with post-marketing

surveillance (PMS) or drug safety monitoring. The historic equiva-

lence of ‘PhV’ with ‘PMS’ relates to the fact that clinical trials in

support of drug applications, with their necessary constraints on

size, duration, and patient heterogeneity, cannot reliably capture

the full range of ADRs observed in widespread clinical use. There-

fore, ADRs that are rare, or occur only after prolonged latency, are

often unknown at the time of initial approval. Just as the drug

discovery process is continuous, with no rigid boundaries despite

the classic segmentation used to depict drug development (e.g.

phases I–IV), PhV is, however, becoming more holistic and inte-

grative and commencing earlier in the drug development process.

Signal detection in PhV
The ‘front line’of pharmacovigilance consistsof ‘signal’detection—

the expeditious identification of early clues of potential ADRs that

may be novel by virtue of their nature, severity and/or frequency.

There is considerable variation in the use of the term ‘signal’

[17]. The World Health Organisation (WHO) definition, and the

most widely cited definition, is ‘‘reported information on a pos-

sible causal relationship between an adverse event and drug, the

relationship being unknown or incompletely documented pre-

viously’’ [18].

When a credible signal of a new adverse event is detected, it

triggers an evaluation that usually begins with a detailed review of

individual case reports of the association that are submitted to

spontaneous reporting system (SRS) databases as described below.

The initial investigation of a signal may determine that a causal

relationship is sufficiently likely to warrant some action (e.g.

labeling amendment), that the relationship is most likely non-

causal, or that it is unclear but continued monitoring and/or

further studies are indicated. Depending on the nature of the

event, a formal study (e.g. epidemiological analysis or large simple

clinical trial) may be triggered by the detection of a credible signal.

Often, however, the action needed on the basis of a signal will be

‘no action’, other than ongoing follow-up of the signal.
344 www.drugdiscoverytoday.com
The above scenarios illustrate that decision-making in the setting

of residual uncertainty is inevitable in contemporary pharmacov-

igilance, from initial signal detection to final adjudication of

whether an association is causal and the appropriate action. The

downstream investigations that are triggered by the detection of a

signal involve scientific disciplines and analytical processes that are

subjects in their own right, and are beyond the scope of this

exposition but suffice it to say that safety reviewers must constantly

weave clinical, epidemiological, quantitative, and molecular

science and logic at the level of individual cases and aggregate data.

In this review we focus on the front-end of the process: strategies for

the initial identification of possible emerging safety issues.

As described below, there are computerized data-mining algo-

rithms (DMAs) that calculate a number that reflects whether, and

by how much, the frequency of a given drug-adverse event asso-

ciation exceeds a null or control value. Reporting frequency in

excess of chance expectation is one of the multiple possible

indicators of a previously unrecognized association with signifi-

cance for patient safety. These numbers, however, viewed in a

biological vacuum, should not be equated with a signal, as defined

by the WHO (see above), and may not require a formal investiga-

tion, depending on the clinical context. We refer to these, there-

fore, as ‘signals of disproportionate reporting’ or SDRs [17] and

stress that the elevation of an SDR to a credible signal is based on a

cognitive clinical review process. In the pharmacovigilance litera-

ture, SDRs have also been defined as ‘associations’ [19].

The problem space of signal detection in PhV
To appreciate better the problem space of signal detection in PhV,

we review its components:

� T
he sample space of ADRs

� T
he reporting mechanism for submitting ADR reports

� T
he ADR databases including the terminologies used to encode

information

� M
ethodologies to interrogate the data

Our focus in this paper is component #4, specifically DMAs used to

screen large safety databases. Knowledge of the first three elements

will facilitate an understanding of the fourth.

The sample space of ADRs
Pharmacovigilance is unique among surveillance systems in the

range and complexity of medical phenomena under surveillance.

This applies to both clinical phenotype and quantitative fre-

quency/risk of occurrence of ADRs. These factors influence the

choice of surveillance methods.

With the increasing number of molecular targets and corre-

sponding drugs, ADRs rival syphilis and miliary tuberculosis as

exemplars of ‘great imitators’ in medicine, in terms of their

extremely protean clinical presentations. Some of these clinical

presentations challenge the traditional views of ADRs as consisting

of allergic reactions, hepatitis, rashes and gastrointestinal distur-

bances. Kidney stones, biliary stones, pure red cell aplasia, throm-

botic thrombocytopenic purpura/haemolytic uremic syndrome,

many forms of vasculitis, pneumothorax, tendon rupture, myopia,

pyloric stenosis, hiccups, hypothermia, non-cardiogenic pulmon-

ary edema and cardiomyopathy are but a few examples. Some

ADRs defy therapeutic/pharmacological expectations—for exam-

ple, anaphylactic reactions to corticosteroids, which are used to
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treat allergic reactions, or hypertensive reactions from drugs given

to treat hypertension. The latter two ADRs are examples of ‘para-

doxical reactions’ [20]. This underscores the importance of the

prepared mind expecting the unexpected [21].

The quantitative frequency or incidence of ADRs ranges from

very rare to common in treated and untreated populations. How

rare or common the ADR is in treated versus untreated popula-

tions, determines the difficulty in differentiating ADRs from back-

ground illness, or the natural history/complications of the disease

under treatment, especially given their myriad presentations. This

influences the optimum methods for detection and/or evaluation

[22].

The reporting mechanism for submitting ADR reports
Every country and/or geographic region (e.g. the European Union)

has its own legal and regulatory framework governing sponta-

neous reporting of adverse drug reactions, but there are common-

alities. Except for pharmaceutical companies that are legally

bound to report suspected ADRs to health authorities, it is usually

a voluntary activity by the source reporter (e.g. health care practi-

tioner, patient). This is the basis for the term ‘spontaneous report-

ing’. Importantly, the reporter does not need proof of causality-

any suspicion, however tentative, along with an identifiable

patient, drug and event, is sufficient for submitting a spontaneous

report.

Since reporting is voluntary and anecdotal, differential influ-

ences that have nothing to do with actual causality or risk may

result in certain suspected ADRs being preferentially observed,

attributed/misattributed to drug and reported/not reported. The

data elements in individual reports are also subject to considerable

qualitative and quantitative deficits in the form of missing or

incorrect information and duplicate reporting [23]. Finally, it is

impossible to know which/how many ADRs were never reported

and how many patients were exposed to the drug. Therefore, while

SRS data can be used to quantify reporting, it cannot be used

accurately to quantify the corresponding risk/incidence.

The ADR databases including the terminologies used to encode
information
Two important characteristics of SRS databases are size and spar-

sity. Large trans-national drug monitoring centres, health autho-

rities and pharmaceutical companies with large portfolios

maintain continuously growing databases of suspected ADR

reports, often numbering in the millions with a large annual

inflow of reports. These databases are also sparse, meaning most

potential drug-event combinations have never been reported and

most that are reported consist of one or two reports. This is

compounded by the hyper-granular structure of the adverse reac-

tion dictionaries used to record adverse events terms, where very
TABLE 1

Contingency table used in disproportionality analysis.

Reports listing cerebellar atroph

Reports listing phenytoin A

Reports for all other drugs C

Total A + C
similar medical concepts may be fragmented across literally dis-

tinct dictionary terms [24].

For example, the World Health Organization Uppsala Monitor-

ing Centre (UMC) database contains about 4 000 000 adverse

event reports listing 720 000 drug-event combinations (DECs) of

which 360 000 have only a single report, 106 000 have two reports,

and 80% of events have fewer than 10 reports. With so little

information on most DECs, differentiating signal from noise is

challenging, both to the human eye and when applying compu-

terized methods (described below) [25]. We now discuss the ele-

ment that is the focal point of our paper: the methodologies

routinely used to explore pharmacovigilance data.

Methodologies to interrogate the data
Reported ADRs may stand out and be selected as possible signals

for various reasons, both clinical and quantitative. The clinical

criteria and heuristics used in pharmacovigilance have been dis-

cussed in detail elsewhere [26–28].

We focus on ADRs that first come to attention only after

accumulation of a crucial mass of cases. Determining this crucial

mass is the key conundrum in signal detection and where quanti-

tative approaches based on computer-based statistical calculations

can help.

Contemporary computer algorithms in pharmacovigilance pri-

marily perform what is commonly called ‘disproportionality ana-

lysis’. Key to understanding this analysis is the 2 � 2 contingency

table that classifies reports according to the presence/absence of

the suspect drug of interest and the presence/absence of the event

of interest in reports (for example phenytoin and cerebellar atro-

phy in Table 1). It summarizes the number of cases in the database

that list phenytoin as suspect drug and cerebellar atrophy as the

event, the number of reports listing phenytoin with other events,

the number of reports of all other drugs listing cerebellar atrophy

and the number of reports listing any other drug and any other

event. The vast majority of reports will fall into the last category

(cell D). Given the sparsity of SRS databases and a focus on rare

adverse events in pharmacovigilance, cell A will have the fewest

reports. A similar table can be constructed for every possible drug-

event combination (drug-event combinations with no reports will

have the cell count A = 0).

The distribution of the number of reports in the table is infor-

mative. Basic quantitative drug safety analysis of any sort often

involves comparing the number of joint occurrences of drug and

adverse drug event (ADE) of interest to the number expected, on

the basis of the play of chance given the unconditional reporting

frequency of drugs and events. The more the number of reports

exceeds the number expected by chance, the more interesting and,

possibly, worthy of further investigation. Basic calculations pro-

vide the number of reports that might reasonably be expected in
y Reports for all other events Total

B A + B

D C + D

B + D A + B + C + D

www.drugdiscoverytoday.com 345
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TABLE 2

Common measures of association for 2 � 2 tables used in disproportionality analysis.

Measure of association Formula Probabilistic interpretation Chance expectation

Relative reporting (RR)1 AðAþ Bþ C þ DÞ
ðAþ CÞðAþ BÞ

PrðaejdrugÞ
PrðaeÞ

1

Proportional reporting rate ratio (PRR) AðC þ DÞ
CðAþ BÞ

PrðaejdrugÞ
Prðaej� drugÞ

1

Reporting odds ratio (ROR) AD

CB

PrðaejdrugÞPrð� aej � drugÞ
Prð� aejdrugÞPrðaej � drugÞ

1

Information component (IC)
Log2

AðAþ Bþ C þ DÞ
ðAþ CÞðAþ DÞ

Log2PrðaejdrugÞ
PrðaeÞ

0

1. The RR, when implemented within an empirical Bayesian framework, is known as the empirical Bayes geometric mean (EBGM). 2. The IC is a logarithmic RRmetric that is implemented in

a Bayesian framework.
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each cell by chance, by which we mean the drug and event are

independently distributed in the database, as well as a variety of

metrics that measure how far the number exceeds chance expecta-

tion (Table 2). Of course, the notion of an expected number of

reports is a useful conceptual prop, but, given the enormous

limitations of SRS data, in reality it is difficult to say how many

reports one should expect.

The number of reports exceeding that expected by chance,

according to some arbitrary, even if rational, model, can never

prove causality. A number of reports exceeding chance expecta-

tion, when considered in isolation, itself does not constitute a

signal of suspected causality. There are numerous causes of signals

of disproportional reporting (SDRs). First, there will be fluctuations

in reporting that are essentially stochastic in nature and that are

particularly problematic with sparsely reported associations - in

other words unusually large (and small) observed-to-expected

ratios (O/Es) may preferentially and transiently occur with asso-

ciations with very low observed or expected counts. Additionally,

the numerous important sources of systematic bias inherent to the

data (i.e., the aforementioned confounders, biases, and reporting

artifacts) may produce many SDRs. Contemporary data-mining

methods cannot effectively address the latter systematic biases and

can only mitigate the former stochastic sources of reporting varia-

bility. There are two basic approaches to controlling the stochastic

variability. One is based on classical or frequentist notions of

statistical unexpectedness and the other is based on Bayesian

statistics. The dichotomisation of methodologies in our exposition

should not be interpreted as a systematic comparison of frequen-

tist versus Bayesian statistics or an endorsement of one approach

over the other. This is because the intensity of research, develop-

ment and implementation devoted to Bayesian methods in phar-

macovigilance has dwarfed that devoted to enhanced or more

complex implementations of frequentist approaches. Expressed a

little differently, the set of commonly used methods, which form a

core of our discussion, consist of some simple frequentist

approaches and relatively more complex Bayesian approaches.

Classical or frequentist approaches
In this case, classical statistical notions of unexpectedness are used

to help improve the signal-to-noise ratio. The common feature of
1 IC and RR formulated in a Bayesian framework in BCPNN and M(GPS),
respectively.
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these approaches is that they rely solely on information contained

in the specific 2 � 2 table corresponding to the DEC of interest

[6,29]. For example, when calculating a PRR for a given 2 � 2 table,

the analyst may also specify additional threshold criteria of at least

three reports and an associated x2 value of>3.85 (corresponding to

a p-value of �0.05) or a p-value of the chosen disproportionality

metric below a specified threshold. A limitation in such a binary

approach (i.e. a separating threshold dividing ADRs into two

classes—SDR+ versus SDR�, as discussed in further detail below

under ‘Practical considerations’) is that even with very small

observed counts, if the expected count is small, the statistics will

fail to screen out such associations, some of which may be false

positives. It remains to be seen if the x2 threshold can be titrated

toward a desired level of sensitivity and specificity. A similar

approach may be used with the p-value of each statistic. Alterna-

tively, the standard error may be used to determine a credibility

interval/lower limit (5% threshold) of the 90% confidence interval

of the statistic. Asymptotic expressions for the standard error of all

the common disproportionality metrics have been derived, some

using the delta method. This reduces the number of associations

presented to the analyst and mitigates stochastic fluctuations.

Of course, as described below in the section ‘Practical considera-

tions’ there is no restriction against using higher thresholds of

statistical unexpectedness, or using a ranking versus a binary classi-

fication approach. One form of ranking implementation described

above isa bivariateplotof thedisproportionalitymetric (e.g. the PRR

and the ROR) versus the measure of statistical unexpectedness,

which we illustrate in Figure 4 in that section. Analysts would then

view the DECs in the upper right hand corner as most quantitatively

interesting, since they are both very disproportionate and much less

likely to represent stochastic fluctuations, with the least quantita-

tively interesting DECs in the lower left corner.

The Bayesian approach
Overview
The challenge of sparsity in spontaneous report datasets was one of

the impetuses for the development of Bayesian methodologies

since, in other arenas, Bayesian approaches have demonstrated

superiority to frequentist approaches when the available informa-

tion is extremely limited, There are currently two major Bayesian

techniques used for data mining in pharmacovigilance, the Baye-

sian Confidence Propagation Neural Network (BCPNN) [4] and the

multi-item Gamma-Poisson shrinker (MGPS) [14].
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Bayesian methods, first adapted to drug safety signal detection

by the WHO-UMC [4], may be viewed as a composite of two

approaches to calculating an O/E ratio for each drug-event com-

bination. One approach, based on the frequentist paradigm of

statistics, views each DEC as representing a realization of a unique

process and that the huge numbers of spontaneously reported

DECs have unrelated sources of variability. An alternative is to

view all of the reported drug-event combinations as realizations of

the same random process and just take an overall or grand mean of

these O/E ratios, based on marginal reporting frequencies/prob-

abilities—basically a ‘null 2 � 2 table’; neither view, nor even a

composite view, is absolutely ‘correct’, hence their combination in

a Bayesian approach. This approach appeals to our prior knowl-

edge and plausible belief that given the sparsity of the data, the

numerous reporting artifacts and confounders, most ADEs are not

being reported unexpectedly frequently when stochastic fluctua-

tions are taken into account, and do not have implications for

public safety.

It follows that two basic conceptual steps characterize the

Bayesian approaches. The first step is to calculate an ‘expected’

or null 2 � 2 O/E ratio or table based on overall reporting patterns

(in contra-distinction to calculating just an ‘expected count’ in

the classical or frequentist approaches). The expected 2 � 2 table

actually encodes an expectation and range of plausible 2 � 2

tables. The second step involves constructing a weighted compo-

site of the null and observed 2 � 2 tables. The null 2 � 2 table

reflects our ‘prior belief’ or ‘first guess’ about the O/E for any ADE

and, in effect, ‘shrinks’ or pulls high O/Es in individual observed

2 � 2 tables supported by minimal data toward this prior belief.

This is the basis for the term ‘Bayesian shrinkage’. This grand

mean O/E is also referred to as the ‘moderating prior’, which in

fact is not a single value, but reflects a range of plausible values,

each with an associated probability leading to a probability dis-

tribution of possible O/Es with an associated expectation value.

This amount of shrinkage is inversely related to the amount of

data on the ADR of interest. In other words, for rarely reported

ADRs, the null O/E is very influential on the weighted average, but

as reports accumulate this influence diminishes until a crucial

mass of cases is achieved and the effect of the moderating prior is

then swamped by the local O/E [30]. As with the moderating prior,

the composite 2 � 2 table is actually associated with an expecta-

tion and range of plausible 2 � 2 tables or O/E ratios. The dis-

tribution of plausible O/Es and their associated probabilities

comprise what is known as the posterior distribution. Viewed a

bit differently, the local 2 � 2 table, or the information on a

specific drug-event combination, is being used to update the

moderating before produce the posterior distribution of O/Es.

This is known as Bayesian updating.

In a sparse dataset, unusually high or low observed/expected

ratios will preferentially be reported in sparse areas of the database,

for example, for combinations with low expected counts. Many,

but not all, of these will represent stochastic fluctuations. By

dampening these fluctuations, the signal-to-noise ratio may over-

all be increased, but possibly at the expense of missing signals.

There is a lack of decision theoretic framework basis for quantify-

ing the balance of costs and utilities for such a procedure and,

given the heterogeneity of different users needs, we feel that there

is unlikely to be such a universal framework. Consequently, var-
ious organizations make choices based on their individual experi-

ence and some organizations focus solely on the Bayesian method,

some the frequentist methods and some use both in parallel. All

organizations that use data mining, however, need also to have

techniques for qualitative filtering of the data.

The principle Bayesian methods: BCPNN and MGPS
There are currently two major Bayesian methodologies based on

2 � 2 tables: The Bayesian Confidence Propagation Neural Net-

work (BCPNN) and the Multi-item Gamma-Poisson-Shrinker. Fun-

damentally, the difference between the two approaches is the

manner in which the moderating prior is derived. The BCPNN

uses a Bayesian approach, while MGPS uses an empirical Bayesian

approach. With the Bayesian BCPNN, constraints are placed upon

the expected 2 � 2 table to achieve a desired null O/E = 1 and a

desired level of shrinkage, whereas the empirical Bayesian MGPS

uses the database to determine the null value (which may be one,

or greater or less than one) and the corresponding strength of the

shrinkage. Each calculates a Bayesian version of the RR or O/E,

along with a range of plausible values.

BCPNN
Since 1998, a Bayesian confidence propagation neural network

(BCPNN) has been used for screening the WHO ADR database as

part of the routine signal detection process [4,13,31,32]. A measure

of disproportionality, called the Information Component (IC) (see

Table 2), and its credibility interval is calculated for each drug

adverse reaction combination in the dataset. While initially the

neural network solution was integral to the approach, as it was

used to calculate IC values, IC analysis no longer requires a neural

net solution and the BCPNN is now exclusively used for more

complex pattern recognition. The IC is defined (Table 2) for a

specific drug adverse reaction combination as [32,33]:

IC ¼ log2

Observed count

Expected count

� �

To calculate the IC within Bayesian framework, the BCPNN effec-

tively constructs a null 2 � 2 table for each possible ADR by

simultaneously constraining the count in cell ‘a’ to be 0.5 with

all cell counts conforming to the marginal relative frequency

expectations of drug and event counts (O/E = 1, IC = log2O/

E = 0). This is accomplished by specifying the hyperparameters

of a Dirichlet distribution. The constraint on cell ‘a’ effectively

determines the strength of the shrinkage since it is influential on

the shape or variance of the moderating Dirichlet prior.

Recent work [34,35] shows that the mean of the IC is well

approximated by the following simple and computationally expe-

dient metric:

IC ¼ log2

Observed countþ 1=2

Expected countþ 1=2

� �

Thus, it amounts to an extra batch of data consisting of 0.5 reports

for which the drug and event are independent. While the con-

straint on cell count ‘a’ of 0.5 is titrated to achieve a desired level of

shrinkage in the WHO database, other databases might justify

different values. Drug-ADR pairs with positive values for the lower

95% confidence limits for the IC (IC025) are highlighted for clinical

review. The measure has been shown to be effective in predicting

future listing in the literature [36].
www.drugdiscoverytoday.com 347
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MGPS
The empirical Bayesian MGPS uses the existing data to determine

the null 2 � 2 table and, consequently, the amount of shrinkage.

This amounts to borrowing information, from all possible 2 � 2

tables to determine the prior probability distribution of O/Es (that

collectively represents the null O/E as a random variable with an

expectation and variance), and then forming a weighted compo-

site of the null O/E and the ‘local’ O/E of the individual 2 � 2

tables. The underlying rationale is that 2 � 2 tables with very high/

very low O/Es that represent stochastic fluctuations may be occur

preferentially among sparsely reported associations so stochastic

fluctuations in opposite directions may cancel when the tables are

pooled, while effectively increasing the sample size at the same

time. Expressed a little differently, the observed 2 � 2 tables are

viewed as realizations of an underlying population of 2 � 2 tables,

distributed according to mixture of two gamma distributions.

As the data are used to determine the null 2 � 2 table, rather

than using a prior belief to determine the null table, the null 2 � 2

table may have a mean O/E that is different from one, which, in

turn, determines the point toward which shrinkage occurs, the

extent of the shrinkage determined by the spread of the O/E values

in the dataset. This then has the property that the point to which

shrinkage occurs and the extent of shrinkage will vary from dataset

to dataset—so that the extent of shrinkage will be applicable to the

dataset of interest. Clearly, however, this comes at a cost of loss of

transparency, as this variable shrinkage will vary both between

datasets, but also within the database over time. Additionally if the

dataset has unexpected properties, leading to a skewed or very

asymmetric prior probability distribution, this may influence the

shrinkage significantly and will not necessarily be transparent.

Another potential drawback is that such an approach may be

computationally intensive, resulting in relatively long run times

that restrict the ability to use results for exploring new hypotheses

[40] in an interactive manner by teams of pharmacovigilance

analysts.
FIGURE 1

Information Component Time Scan of the Association of captopril and Cough in the
95% confidence level has changed as the WHO database has evolved from 1980
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The Bayesian disproportionality metrics provided by MGPS are

the EBGM, which is the corresponding empirical Bayesian imple-

mentation of the RR, and the EB05, which is the 5th percentile of

the posterior distribution of plausible RRs.

Examples of data-mining outputs
Below we provide a few graphical examples of the application of IC

analyses to the WHO database to both illustrate key principles and

familiarize readers with the actual data-mining outputs that are

available to analysts.

Figure 1 illustrates the method with the classic historical exam-

ple of cough and captopril. The association of an antihypertensive

drug with a common medical event that certainly does not meet

the criteria for a DME, represents one scenario that might chal-

lenge early detection without a quantitative screening strategy in

place. The figure shows the cumulative evolution of the IC over the

life of the database. Initially the IC is 0—the IC value reflecting a

prior assumption of independence between drug and AE in the

absence of data. The wide confidence intervals reflect the volatility

of the IC value to increasing data accumulation. The IC drops due

to reporting of the drug and AE—but not the combination. The IC

then drops as reporting of the AE and drug occurs, but not

concomitantly; therefore the observed count remains at 0, but

the expected count increases. When the first observed case of

captopril implicated coughing, the IC increases, but the shrinkage

means that the IC does not increase as high as with a frequentist

estimate and, similarly, the still-wide confidence intervals reflect

the still-sparse data on this combination. As more cases of sus-

pected captopril induced coughing are reported, the IC increases

to a value of 4 and the confidence intervals shrink. IC values on

WHO data are now routinely highlighted for clinical review when

the IC025 becomes positive.

A more contemporary example is the association between the

antiepileptic topiramate and glaucoma, shown in Figure 2. For this

combination the IC025 became newly positive in the second
WHO ADR database. The graph shows how the IC value with upper and lower
onwards. IC values are plotted based on cumulative data.
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FIGURE 2

The change in IC value over time for the combination of antiepilepic topiramate and glaucoma in WHO data base.
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quarter of 2000. This stimulated clinical review of the case series,

then in April 2001 the signal was disseminated to the national

centres that make up the WHO Programme for International Drug

Monitoring. Knowledge accumulated on the signal, the first lit-

erature case report was published in July of the same year, and the

association became established in the autumn of that same year, as

exemplified by the FDA issuing a ‘Dear Healthcare Professional

letter’ in October 2001.

We draw on another classic historical episode in pharmacov-

igilance to show how an analyst may use these techniques to

explore the drug selectivity of a given adverse event within a

pharmacological/therapeutic class (see Figure 3). Practolol was a
FIGURE 3

IC Time scan of practolol and selective beta-blockers as a group (WHO Anatomic

peritonitis in the WHO database.
beta-blocker that was introduced into clinical practice in 1964 in

the UK. Initial reports of practolol were characterized by the

apparently non-serious nature of the adverse events. After seven

years in clinical use, the first report of sclerosing peritonitis was

submitted and cumulative experience indicated the long temporal

latency that may be observed with this event that explains the

reporting of cases long after the drug was withdrawn in 1975 [37].

Sclerosing peritonitis is an unusual clinical disorder, in which the

peritoneal cavity is the site of a dense fibrotic reaction that can

encase the small bowel, resulting in intestinal obstruction; again,

another example of the wide variety of ADRs encountered in PhV.

Complete encasement results in the so-called ‘abdominal cocoon’.
al Therapeutic Chemical (ATC) classification group C07AB) and sclerosing
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While the drug-associated disorder is quite distinctive, other

potential causes of sclerosing peritonitis include: continuous peri-

toneal dialysis; ventriculoperitoneal shunts and various other

infectious, neoplastic and autoimmune disorders. It has also been

reported in the absence of any identifiable antecedents [38,39].

Figure 3 shows the change of IC for practolol with the term

sclerosing peritonitis. Superimposed is the group of selective beta-

blockers (excluding practolol), defined by Anatomical Therapeutic

Chemical (ATC) group, that is all beta blockers classified as C07AB.

Clearly, the group is very different from the practolol graph and

this is indeed a well-established drug-selective side effect. While

spontaneous reports cannot be used to determine drug-specific

associations, this type of comparison can clearly help in the

generation of such an hypothesis, to be tested using other methods

and datasets. The time scan is not a substitute for causality

assessment and cannot be used to exclude causality in reports

of sclerosing peritonitis involving other beta blockers, but can

provide one piece of the puzzle that is ultimately assembled into a

coherent hypothesis.

Method testing
The validation of these tools, or any signal detection procedure in

pharmacovigilance for that matter, is not an easy task for numer-

ous reasons [41]. The basic idea behind testing and validating these

tools may also be encapsulated with a specific 2 � 2 table:
True positive True negative

Test positive A (Correct prediction) B (False positive)

Test negative C (False Negative) D (Correct prediction)
With any procedure, the ultimate downstream objective is to

maximize the number of correct classifications (detecting new

causal relationships/not highlighting relationships that are mani-

festly non-causal) and minimize the number of incorrect classifi-

cations (false positives and missing causal relationships).

One of the particularly contentious elements of validation

exercises involves defining and identifying what constitutes a ‘true

positive’ and ‘true negative association’. For example, some have

argued for focusing validation on performance in the detection of

associations for which causality is guaranteed. We maintain that a

more flexible approach that recognizes the importance of detect-

ing associations that are possibly or probably real, even if not

guaranteed with metaphysical certitude, is appropriate for real-

world pharmacovigilance. This is because decisions must fre-

quently be made in the setting of residual uncertainty and where

the consequences of different errors are not identical.

For a signal detection system to be successful, it must highlight

issues that will go on to be well established, while they are still

emerging issues. It is not necessarily true that methods adept at

focusing attention on now well-established drug safety issues,

would have been able to highlight such issues when an apparent

association was unknown or controversial; as the quantity and

quality of pharmacovigilance data is very different for well-estab-

lished side effects (particularly those that are publicized exten-

sively). This dependence on time adds to the challenge of assessing

the usefulness of the tools. Another problem is attempting to

determine the number of true negatives, that is: things not high-
350 www.drugdiscoverytoday.com
lighted by the method and considered true negatives, as many

such issues may not even be reported! Nevertheless, several eva-

luation studies have been performed focusing on four specific

testing elements:
1. S
pecific examples either shown retrospectively or prospec-

tively of now well-established issues that could have been, or

were highlighted early with DMAs, for example [4,13].
2. A
ssessment of concordance of the measures
3. S
ystematic retrospective testing of combinations to estimate

the predictive value of DMAs by comparison to some external

reference material (e.g. [36,42]) and finally,
4. T
esting on theoretical test sets constructed specifically for the

evaluation tasks (e.g. [43,44]). There are multiple nuances and

sources of variability in data-mining procedures, outputs and

performance assessment [45], some of which have received

only limited attention in the data-mining literature [46].
The proper role of data mining, whichever software is selected, is

within a comprehensive suite utilizing multiple strategies, tools

and data streams, and how, expeditiously, to triage and evaluate

signals originating from any source. The reality is that judicious

implementation (e.g. titrating thresholds of disproportionality,

statistical unexpectedness and/or minimum case counts), based

on the level of sensitivity and specificity appropriate for the task at

hand, it is possible to achieve comparable performance with any

method, particularly if they are being used as binary classifiers.

Furthermore, for purposes of exploratory data analysis of this

sort other performance metrics are valid considerations, such as

computational burden [40]. Some approaches, such as MGPS, are

computationally intensive. Some have questioned the added value

of such intensive additional computational steps. Simple Bayesian

approaches [35] or enhancements to frequentist techniques [47]

have been suggested as useful alternatives Computational expe-

diency may also present advantages in real-world pharmacovigi-

lance scenarios [40].

Practical considerations
DMAs are important additions to the pharmacovigilance toolbox.

However with DMAs that have an extensive mathematical veneer,

it is especially easy to become desensitized to the rate-limiting

effects of SRS data. The reality is that while these tools have

enhanced the signal detection activities of a broad range of orga-

nizations, and, therefore, have legitimate indications, they also

have side effects that need to be recognized, such as the generation

of findings that will often divert resources investigating associa-

tions that prove to be spurious, and the fact that they may miss

relevant associations, absolutely or relatively in terms of timing

relative to conventional methods [31,36,48–50].

Deploying a DMA requires the analyst to make a variety of

selections of various degrees of arbitrariness from a large space of

available choices that define the configuration of an individual

data-mining analysis. Some of these choices influence the numer-

ical outputs and others influence the interpretation and/or

response to a given set of outputs. We will discuss two of these

choices to give the reader a taste of some of the nuances involved

in real-world data mining in pharmacovigilance. One is whether

the DMA is used as a binary versus ranking classifier, which we

discuss now. Another is the issue of whether the analysis should

include covariate stratification methods. The latter deals with the
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fundamental issues of confounding and effect modification, dis-

cussed in detail below, under the heading: ‘The need for more

complex methods’.

Measures of disproportionality and/or statistical unexpected-

ness can be used as a thresholding tool to separate combinations

into two groups: those requiring further consideration (i.e. those

combinations exceeding specified threshold(s), and those that do

not (e.g. those combinations at or below threshold(s)). Also, the

values can be used to rank the combinations: the principle being

that, all other factors being equal, combinations at the top of the

list, or furthest from the origin in a 2-D plane of disproportionality,

and statistical unexpectedness, are more likely to represent emer-

ging signals and that review should start at the top of the list and

work down.

Figure 4 provides an example received from the Swedish Medical

Products Agency (MPA), which has used PRRs for signal detection.

The two approaches are not mutually exclusive and one can

define a specific threshold, but use numerical ranking to triage

associations exceeding threshold(s). In reality, however, all other

factors are rarely, or never, equal in the complex domain of

pharmacovigilance, and triage decisions are typically cognitive

processes that blend the aforementioned numerical information

with scientific knowledge and judgment. The limitations of spon-

taneous reports mean that caution is needed not to place inap-

propriate focus on the ranking order, but instead see it, as with
FIGURE 4

Bivariate plot of PRR versus x2.
thresholds, as one of multiple pragmatic approaches to focus on

clinical review on issues most likely to represent emerging drug

safety issues.

While thresholds have been proposed for each DMA, these are

dataset-specific and have been chosen on the basis of empirical

testing and some notion of a target range of sensitivity and

specificity, which can be highly situation-dependent. Similarly

while there seems to be agreement that this process of ranking

works there is no, or very limited, discussion in the literature of

when a user having worked their way down a list, can disregard the

remaining drug AE combinations in the safe assumption that

emerging signals will not be missed.

Given the numerous nuances and limitations of datasets, meth-

ods, and performance assessment most use of data mining in PhV

is done as part of a holistic approach to signal detection utilizing a

comprehensive suite of methods and data streams, both clinical

and quantitative. Figure 5, adapted from Lindquist [19] is an

illustration of how one major drug safety organization, the

WHO-UMC, utilizes data mining.

Note that triage steps are accommodated. Many organizations

utilize additional triage criteria, which, while not standardized or

validated, are based on sound public health and decision-making

principles. Table 3 displays the triage criteria used at WHO [31].

The concept of such triage criteria was first delineated by Venulet,

who referred to them as discerning parameters [51].
www.drugdiscoverytoday.com 351
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Importantly, quantitative approaches are typically discussed in

the context of initial detection of signals but they may play an

important role in the initial process of evaluating a signal initially

detected by other methods applied to SRS data, sometimes called

signal strengthening (or weakening) or signal refinement. This can

be understood in terms of pre- and post-test probabilities. If, for

example, the clinical information associated with a potential

signal is very compelling and strongly suggestive of drug causation

or an alternative aetiology, then the added information provided

by the corresponding SDR is marginal at best. On the contrary, it is

often the case that the clinical information is ambiguous and does

not point strongly in favour of drug causation versus an alternative

aetiology then the presence or absence of an SDR may be the first

step pointing in one direction or another. The former situation is

akin to a very high or very low pre-test probability, while the latter

is akin to an intermediate pre-test probability. In the former case, a

positive or genitive screening test adds little new information,

while, in the latter, it does.
TABLE 3

Triage criteria used for screening the WHO database.

� Use of different selection criteria to filter out the combinations of likely

greatest interest

� Predefined algorithms focusing on

-Unknown/unexpected reaction

-Disproportionality

-Rapidly increasing disproportionality (IC-IC old > 2)
-New drug

-Serious reaction

� WHO Critical Term, Outcome death

-Reports involving many countries
-Positive rechallenge

-Special interest reaction

� For example, agranulocytosis, Stevens Johnson syndrome
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**Need for more complex methods for pattern recognition
The range of complexity of the phenomena under surveillance, the

structure of the data, and the intrinsic limitations of 2 � 2 table-

based methods suggest that more complex techniques may

improve our ability to identify relevant reporting associations in

SRS data.

While 2-D associations account for the bulk of phenomena

encountered in day-to-day pharmacovigilance, there are more

complex higher-dimensional phenomena important for patient

welfare. Associations may involve multiple interacting drugs (e.g.

drug1-drug2 events) or drug-induced syndromes, in which a con-

stellation of signs and symptoms (e.g. drug-event1–event2–event3)

exist. Not only are these phenomena important to detect, but for

drug-induced syndromes, once identified, it may be useful to

define the full range of clinical phenotypes and to distinguish

distinct, but clinically overlapping, syndromes. For example, neu-

roleptic malignant syndrome and serotonin syndrome are distinct

entities with overlapping clinical phenotypes, involving neuro-

muscular and autonomic features. Another example is drug-

induced embryopathy. Even for 2-D associations, relationships

between the drug, the event and additional covariates may ulti-

mately contribute to a greater understanding of potential risk

factors or high-risk subgroups.

The reduction of dimensionality to 2 � 2 tables, while practi-

cally useful, as shown above, necessarily results in a loss of infor-

mation that potentially reduces applicability to more complex

safety issues and further probing of simpler associations. A current

research challenge is to exploit more fully the information on

individual drug reporting, rather than merely lumping all drugs,

other than the one under immediate consideration, into a single

group ‘other drugs’ in a 2 � 2 table. The same applies to the AE

terms reported. In other words, if you could ‘unpack’ cells B, C, and

D in the 2 � 2 table you would be reminded that these single

categories lump together huge numbers of drugs as ‘other drugs’



Drug Discovery Today � Volume 14, Numbers 7/8 �April 2009 REVIEWS

R
ev
ie
w
s
�
K
E
Y
N
O
T
E
R
E
V
IE
W

and numerous events as ‘other events’. Drugs can be very hetero-

genous from one another, as can events, and both will have their

own relationships with each drugs and events in the dataset that

may be important to understanding safety phenomena, such as for

example drug–drug interactions and bystander effects, in which a

drug may be associated in the 2 � 2 table because it is frequently

co-prescribed with another drug known to have that side effect,

and drug-induced syndromes.

To date, a few basic techniques have been applied to reveal more

complex relationships. Covariate stratification is used to attempt

to control the effects of confounding factors. Extensions of dis-

proportionality analysis to higher dimensions and multiple logis-

tic regression has been applied mostly to drug–drug interactions.

Finally, unsupervised pattern recognition, has been applied to a

limited extent to the detection and characterization of drug-

induced syndromes. We discuss each in turn, but stress that the

potential of more sophisticated methods to facilitate knowledge

discovery in this domain does not eliminate the important role

that clinical pharmacological knowledge continues to play in the

detection and understanding of more complex safety phenomena,

especially drug–drug interactions [52–54].

The impact of other variables on drug-event
combinations
Among the other information that is invisible in a 2 � 2 table are

data on variables that may be confounding factors (also known as

‘lurking variables’), or effect modifiers, that may be the key to

understanding even apparently ‘simple’ 2-D SDRs. Some such

associations can be relatively easy to observe in certain circum-

stances, such as confounding by age, gender, year of report and so

on. The number of potential confounding factors and effect

modifiers, however, both recorded and unrecorded, presents dif-

ficulties in that they can result in spurious or masked associations

[55]. Furthermore, the interplay of multiple variables can poten-

tially reveal complex drug–drug interactions and drug-induced

syndromes.

This is a simple example of a more general phenomenon. In

general, particular patterns of association between observed and

unobserved variables can lead to essentially arbitrary measures of

association involving the observed variables. These measures can

contradict the true unknown underlying causal model that gen-

erated the data. For example, in addition to drug–drug interaction

detection, other co-reporting of pairs of drugs needs to be high-

lighted to prevent the aforementioned ‘innocent bystander’ being

inappropriately associated with an apparent adverse drug reaction,

in fact caused by a co-prescribed and reported drug [56]. Screening

out for confounders can be done, but adjustment by too many

variables can lead to the missing of signals in the application of

data mining [55].

Confounding can, in principle, be relatively easily handled by

stratification, although its practical implementation in PV data

mining is far from intuitive and is fraught with difficulties [57]. For

example, measures of disproportionality can be adjusted for the

effect of a confounder using a Mantel-Haenszel adjustment to

adjust the expected count for the impact of a third variable

[5,30]. Clearly, such adjustments are not appropriate in the pre-

sence of effective modifiers [30] and alternative methods are

needed. Screening for stratum-specific effects will also add value
[13]. The large numbers of drugs in the database means that

Mantel-Haenszel approaches are not well-suited to addressing

confounding by drug (with the large number of strata) [30], logistic

regression is a more appropriate approach that could be used to

address confounding by drug, although there is relatively limited

work on the application of logistic regression in post-marketing

surveillance (as discussed below).

Higher-dimensional disproportionality analysis
A three way reporting disproportionality exists if the probability of

a randomly selected report listing all three elements (e.g. drug1–

drug2-event) is greater than might be expected from the general

reporting of the three elements [13]. An ‘expected’ reporting

frequency is calculated representing the number of reports

expected given that the two drugs and the event are independently

distributed in the database. In other words, if the probability of

observing two specific drugs and an event in a randomly selected

report is higher than the product of the probabilities of observing

each one in a randomly selected report, one could say that this is

an unusual three-way occurrence [13].

It is possible, however, to observe such an unusual occurrence

because of strong two-way dependencies [14]. Therefore, a mea-

sure of disproportionality can also be defined with an expected

count pair based on pair wise dependencies, such that the prob-

ability of a randomly selected report listing the most strongly

dependent pairs among the former triplet (e.g. drug–drug,

drug1-event or drug2-event). So some approaches calculate the

[Othree way/Etwo-way associations] [14,35,58].

The limited success of measures of disproportionality has, at

least partly, been due to the methods’ focus on a multiplicative

model for calculating an expected count; recent research has

shown that an additive model can be more effective for sponta-

neous report screening [35,58].

Nevertheless, drug–drug interaction data mining in sponta-

neous reports may well be useful in signal detection. Spontaneous

report screening has already been shown to have value in high-

lighting known drug–drug interactions that continue to be fre-

quently reported [59], despite the warnings of severe established

interactions, emphasising ongoing patient safety issues.

Multiple logistic regression
One potential approach to a fuller understanding of the complex

interdependencies in SRS data is multiple logistic regression [12]

that ‘unpacks’ the 2 � 2 table by controlling for co-medications. In

effect, it creates a composite predictor variable of all potentially

relevant covariates (e.g. all co-medications). The predictive weight

of each individual covariate is determined by seeing how much of

the variance is explained by all other covariates. The residual

variance that remains unexplained by the other covariates, there-

fore, represents the independent contribution, or weight, of that

element of the composite predictor variable. Until quite recently,

the computational challenge presented by such regressions with

upwards of 10 000 drugs as covariates was a significant barrier

along with a significant potential for overfitting. Therefore, logis-

tic regression application to spontaneous reports was restricted to

specific questions [12] rather than large-scale screening. Now,

however, several programs exist that can carry out linear and

logistic regressions with millions of covariates, one method of
www.drugdiscoverytoday.com 353
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which is the BBR developed by Genkin et al. [60], which has been

applied to spontaneous reports, preliminary results of which sug-

gest shrinkage regression is promising as a surveillance tool, but is

likely to be a complement to, rather than replacement of, the

bivariate measures of disproportionality discussed earlier.

Unsupervised pattern recognition
Unsupervised pattern recognition methods may be applicable to

the detection and delineation of complex drug-induced syn-

dromes. It is a well-known problem in spontaneous ADR reporting

that not all adverse drug reactions that are suspected will be

reported [61,62]. Rarely, even when a case is reported, will all

relevant data, such as the dosage administered, be recorded.

Additionally, there are problems of either incorrect diagnosis, or

certain symptoms not being recognized. Assuming that all the

symptoms occurred, which is often not the case, the choice of term

when recording the symptoms will exhibit inter-reporter varia-

bility and intra-reporter variability. This results in suspected ADR

case reports where there is a large amount of missing data [23].

Follow-up reports may often give more case details, and further

information on later symptoms and the outcome of the suspected

ADR.

In terms of the adverse reaction terms listed, some may be

incorrectly diagnosed, some incorrectly coded and some may be

missed altogether. When looking for syndromes, the consequence

is that few, if any, case reports will have all symptoms of a

syndrome listed. It is clearly of interest, however, to detect overall

clusters of related symptoms from this incomplete reporting.

Similarly, there will be other large clusters of characteristics that

are never all reported together involving many different types of

variables.

It is impossible to define conditions that precisely describe the

properties of such patterns of interest in general terms, for example

the number of members within each pattern, the specific variables

that will be involved, and even how many patterns of interest will
FIGURE 6

A cluster of ADR terms detected by an analysis of haloperidol data in the WHO d

(rBCPNN). Column and row headings are codes representing specific ADR terms. Se

haloperidol. All other numbers represent the total reporting of the pair of ADR term
with a positive IC value; blue boxes negative IC values.
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exist in a particular dataset can all vary. While the descriptions of

specific patterns of interest might allow them to be detected, being

able to discover patterns of interest with as few preconceptions as

possible, generating questions that might not otherwise have been

considered is a key problem of interest.

Unsupervised learning using neural networks has been tradi-

tionally applied to find relationships in data, on the basis if

learning from training data and test data, rather than providing

decisions on how the neural network should learn or preconcep-

tions on relations between variables. Such methods are also com-

putationally efficient when searching for relations between many

variables. Applications of neural networks include handwriting

recognition [63], prediction of credit risk bankruptcy [64], ozone

concentration [65] and even tornados [66]. A neural network

method was, therefore, potentially useful for the problem of

unsupervised pattern recognition in post-marketing surveillance.

The IC disproportionality method described above has been

extended to find patterns amongst several variables, the IC repre-

senting weights in a recurrent Bayesian confidence propagation

neural network (BCPNN). The recurrent BCPNN as a tool for

unsupervised pattern recognition has been tested on theoretical

data and shown effective in finding known syndromes in all

haloperidol-reported data in the WHO database [67].

One example is clustering of the different adverse events listed

on similar reports. This can represent several patterns of interest

including symptoms that constitute a syndrome. As described

above in an ADR database, the sparse nature of the data means

that rarely, if ever, will all constituent symptoms of a syndrome be

listed on any single case report. The individual ADR terms that

make up a syndrome will not even necessarily show strong asso-

ciations (positive scores of measure of disproportionality) with the

drug causing the syndrome. The symptoms will occur sometimes

with the drug in small groups of terms and have strong associa-

tions to other, more commonly, drug related symptoms in the

syndrome. Therefore, searching for co-reporting of all symptoms
atabase using a recurrent Bayesian confidence propagation neural network

cond row and column represent overall reporting of a specific ADR term for

s based on the column and row. White filled box represent a pair of ADR terms
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has limited use and more sophisticated methods are needed to find

such relationships. A recurrent Bayesian Confidence Propagation

Neural Network (BCPNN) has been applied to the WHO database

of suspected ADRs [67]. This method is able to highlight clusters of

ADR terms reported for specific drugs, such as the following cluster

of ADR terms highlighted within reporting of haloperidol sus-

pected ADRs (Figure 6).

In a feed-forward neural network, input data enter the network

by setting the level of activation of nodes in an input layer, and

then, via weighted connections, influence the activation levels of

an output layer of nodes, to give results. The weight of the

connections in a Bayesian Confidence Propagation Neural net-

work is the IC value [4]. In this recurrent neural network, however,

there is one network layer where the activation of each node is

effected by the state of all the other nodes; the greater the weight

the (IC value) between two nodes, the greater the influence the

activity of each node has on the other. The activation levels of the

individual nodes are initially set by an external stimulus and then,

over time, the activation of each node changes, on the basis of the

activation level of all other nodes. The states of all nodes are

iteratively recalculated until the states of all nodes stabilize. Initi-

ally, the network has a certain ‘‘energy’’ associated with it, the

network then searches for a lower energy level. When an energy

minimum is found, the activity of all nodes stabilizes. Nodes that

are active when the energy minimum is reached are the members

of the output pattern.

The Column and rows in Figure 6 list the same ADR codes that

refer to specific ADR terms. The numbers in the body of the table

are the numbers of suspected haloperidol ADRs, where the pair of

ADR terms in the row and column is co-listed. Each white square in

the figure represents a pair of ADR terms between which there is a

positive IC value, the blue squares a negative IC value.

The highlighted ADRs in this pattern were: NMS, hypertonia,

fever, tremor, confusion, increased creatine phosphokinase, agita-

tion, coma, convulsions, tachycardia, stupor, hypertension,

increased sweating, dysphagia, leukocytosis, urinary incontinence

and apnoea. Only 1 ADR term code A0116 (hypertonia) had a

positive IC with all other terms in the pattern; also this list does not

simply correspond to the most reported ADRs (nor highest IC

value terms) for haloperidol. All ADRs are symptoms associated

with NMS in standard literature sources, with the exception of

dysphagia, for which published case reports exist of a possible link

to NMS.

Clustering of similar case reports
Similar case reports should be considered together in case-by-case

analysis for several reasons. Firstly, such reports might be linked to

some underlying cause and, therefore, review of the separate

reports might strengthen the probability of detecting a signal.

Secondly, such reports might be duplicate copies of the same ADR

incident and, if not actively considered as duplicates, might give a

misleading strong impression of a signal. Duplicate detection is a

well-established problem in spontaneous report screening [68],

even more so since the advent of electronic reporting, whereby

copies and variants of an original report can more easily occur. The

only published algorithm on duplicate detection for screening for

similar reports based on information, in addition to drugs and

adverse events listed, is based on a hit miss model and is used for
detecting similar cluster of case reports in the WHO database [23].

The algorithm is developed from the Copas and Hilton method

proposed for record linkage [69]. In principle, an overall similarity

score is established for every possible pair of case reports in the

spontaneous report dataset. This overall score is the sum of the

score calculated for each individual record field, including drugs

listed, country of origin and age and gender of patient. Overall

high scores are indicative of informatively similar spontaneous

reports and trigger clinical review. As well as detecting duplicates,

the method has also proved useful in determining other clusters of

similar reports, such as series of reports received from the same

dentist on the same day – which, while describing separate sus-

pected incidents, clearly cannot be considered independent

reports in the same way as two reports received in different time

periods from different countries. This duplicate detection algo-

rithm is now in routine use on the WHO database.

Assumed independence of all entered spontaneous reports is a

current weakness of the routinely used DMAs in PV, and while the

exact magnitude of duplicate detection is not known there is an

acceptance that there are examples [70] that illustrate its potential

to impact signal detection capability adversely. Consequently,

such weighting of reports in the currently used DMAs may provide

major performance improvement in signal detection.

Key research challenges in the use of computer algorithms in
post-marketing surveillance
The vast majority of spontaneous reports have been coded using

hierarchical terminologies. It is well accepted within the field that

these hierarchical terminologies are not optimally constructed to

support signal detection [24], whether qualitative or quantitative.

Increasing efforts are being put into methodological development

of the terminologies themselves and the methods themselves to

improve signal detection. Two specific initiatives are more sophis-

ticated semantic reasoning [71] and also tools based on a statistical

framework for borrowing of information from semantically similar

ADR terms [72].

While post-marketing signal detection predominantly focuses

on the analysis of data collected after a drug is launched in the

form of spontaneous reports, there is an increasing interest in

analysing other healthcare data, such as the re-analysis of rando-

mized clinical trial (RCT) data, particularly if pooled together, in

order to glean more from the data when it is analyzed from

another perspective; some examples of data mining of clinical

data are included in references [73,74]. Methods for highlighting

possible associations in RCTs could include the implementation of

disproportionality measures as presented here, if possible adapted

to consider the occurrence of adverse events in placebo groups; or

completely different measures. Also the optimum balance of clin-

ical and quantitative surveillance in clinical trials is still very much

an open question as the quality and completeness of clinical trial

data, relative to SRS databases, is much higher, facilitating clinical

causality assessments at the individual case level, and because

preserving the blinding may both complicate and improve the

potential value of the prospective application of quantitative

approaches in ‘real-time’. Clearly screening of RCTs will not

replace the need for signal detection on observational data,

because of the carefully restricted drug use in RCTs. Some data

mining of prescription databases has occurred [75]. Similarly, there
www.drugdiscoverytoday.com 355
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is increasing interest in the data mining of electronic patient

records [33,76]. We anticipate post-marketing surveillance of

adverse effects of drugs and research will increasingly involve

combinations of the above datasets, as well as spontaneous

reports.

Decision support methods in the identification of
ADRs—a holistic approach
Here we need to discuss the partial role quantitative screening of

spontaneous reports plays in the discovery of novel safety issues.

There are two justifications for its focused use in a well-defined and

restricted role. First is that most organizations use quantitative

screening as a supplement rather than a substitute to qualitative

signal detection strategies. For organizations with a comprehen-

sive suite of pre-existing rigorous signal detection strategies, this

use as a supplement obviously restricts the specific contribution of

quantitative methods of signal detection. Secondly, just as impor-

tant a justification is an understanding of pharmacovigilance

processes as a continuum from exploratory analysis that generates

ideas (i.e. signal detection or hypothesis generation), to confirma-

tory analysis of these ideas or hypotheses. The process is a con-

tinuum, and as such different points in the process share common

or overlapping elements of supporting logic and data. But natu-

rally different aspects need to be emphasized at one or the other

end of the continuum. There is a relative and judicious premium

on openness (sensitivity) to new ideas at the exploratory front-end

of signal detection. However once we have a target signal and wish

to expeditiously execute an analysis more akin to a confirmatory

analysis, we place a higher premium on methods that are more

specific, including hypothesis testing studies. It reflects Tukey’s

metaphor of exploratory data analysis as detective work and

confirmatory analysis as the work of a judge or jury. The detective

seeks patterns or clues and the data judge determines if these

patterns and clues can be trusted [77]. Determining which issues

are more likely to represent emerging ADRs using all the available

evidence on spontaneous reports [28], before considering more

detailed studies, is somewhere in the middle of this continuum,
356 www.drugdiscoverytoday.com
and can be seen as in some ways as adapting and applying the

Austin-Bradford Hill criteria for adjudicating causality in epide-

miology, to the sphere of signal detection in pharmacovigilance

[78]. The effective use of quantitative screening algorithms is

therefore just one important option in an overall process of ‘good

signal detection practice’. Effective strategies for signal assessment,

strengthening, follow-up, and management are, while beyond the

scope of this article, all equally important to the provision and

maintenance of a trustworthy and valuable process.

Conclusions
There are now a variety of tools and computer algorithms to help

screen large safety databases. Each can, in effect, compress the data

into a high grade ore. Methods to improve the signal-to-noise

ratio, whether by classical or Bayesian approaches, are far from

perfect, primarily because of the nature of spontaneous reports,

and remove signals with noise, necessitating their use as supple-

mental tools, rather than as stand-alone procedures. While the

elegance of the Bayesian approaches is undeniable, their theore-

tical benefits have not been shown to give large practical benefits

in screening of spontaneous reports for many organizations and

may have some drawbacks. Judicious implementation of all the

methods gives comparable results and far greater variation in

performance is seen owing to heterogeneity in implementation

choices, such as threshold selection/titration and the triage logic

and procedures for investigation of signals. Some ADRs will be

most easily detected by quantitative filters, some by qualitative

filtering based on the nature of the information listed on the

reports [79]. It is an open question how far sophisticated statistical

tools can lead to substantial improved performance for single

drug-signal AE screening, given the imperfect nature of the data-

sets they are implemented on, particularly given the increased cost

of lack of transparency. Nevertheless, the majority of data mining

in PV has neglected the screening of high-risk groups and other

more complex patterns, from which many more useful findings

could be expected, and we anticipate more sophisticated techni-

ques will play a crucial role.
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