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Modelling iterative compound
optimisation using a self-avoiding walk
John Delaney

Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom

The optimisation phase is a crucial step in the process of drug development, yet the mechanics of the

projects that make it up are poorly understood. Weak documentation of failed projects makes statistical

analysis of the factors affecting project performance challenging, so a better approach may be the

development of an underlying theory of how projects work. We present a model based on a modified

random walk in a relevant chemical space and use it to produce simulations of projects and portfolios of

projects. Simulation is used to explore parameters that might affect the performance of a project and

shows that they fall into two groups – target and process – that affect the overall performance in distinct

ways.
Introduction
The problems facing pharmaceutical research have been well

documented over the past few years [1]; in essence, while R&D

spending has gone up substantially [2], the number of new che-

mical entities being submitted for regulatory approval has not

increased. One response to this has been an increased interest in

the actual process of drug research and ways in which it could be

made more efficient. This has ranged from quantifying the causes

of late stage failures [3] to attempting to apply modern manufac-

turing process thinking (e.g. six-sigma [4]) to research activities.

Most of this work has treated the various stages of research (screen-

ing, lead finding, optimisation, pre-clinical and so on) as ‘black

boxes’ [5,6], the inner workings of which are of little concern. The

aim of this article is to pry open one of these boxes, optimisation

(approximately 14% of the cost of drug development [7,8]) and

take a look inside.

The chemical project is a key component of drug and agro-

chemical research [9] because it is the very stuff of which the

optimisation phase is made. Once a lead compound has been

identified by screening, patent searching or rational design, a

process of development is applied where compounds similar to

the lead are synthesised and tested in an iterative cycle [10]. The

hope is that the project learns more about the biological target

with successive iterations, enabling better compounds to be
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designed for the next round of testing. This learning process

has been extensively studied, because it is at the heart of our

ideas about the relationship between structure and activity (SAR)

[11], and at times there is a feeling of ‘manifest destiny’ [12]

about the whole practice. This sense is not born out in reality,

where many projects never reach a satisfactory conclusion, such

as promotion to a development candidate [13]. Experienced

synthetic chemists are all too familiar with series that never

capture the level of activity of the lead, or which seem to hit a

plateau of activity that defies improvement. The nature of the

target changes as the project evolves because more factors come

into play beyond raw in vitro activity – in vivo availability,

pharmacokinetics, toxicity, product formulation and clinical

efficacy; all potentially stand in the way of a project yielding

a marketable product.

The disjunction between SAR vision and practical project

outcomes is best understood by considering what scientific

criteria terminate a project – simplistically, a project halts when

a sufficiently good compound is found for promotion or when

hope for producing a better compound evaporates. An active

project remains active precisely because none of its members

has met the criteria for progression to development. SAR works

best when interpolating within its own data set [14,15],

and extrapolation (implied by the need for an improved

molecule) is much harder. Because the nature of projects

emphasises extrapolation, SAR necessarily struggles [16,17] as
ee front matter � 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2008.10.007

mailto:john.delaney@syngenta.com
http://dx.doi.org/10.1016/j.drudis.2008.10.007


Drug Discovery Today � Volume 14, Numbers 3/4 � February 2009 REVIEWS

R
ev
ie
w
s
�
P
O
S
T
S
C
R
E
E
N

it explains where a series has been rather than where it should

go next.

We have attempted to analyse in-house projects to investigate

whether there were any differences between successful and unsuc-

cessful projects, but this has highlighted some problems. A study

of 50 randomly selected early stage Syngenta projects, conducted

in 2003, found that nearly 30% of them had never been formally

closed – failure could only be inferred from scrutiny of the date the

project document was last accessed (12 months of inactivity was

assumed to indicate failure). This illustrates a general point – we

are better at documenting successes than failures [18]. It is also

difficult to ascribe simple, numerical project parameters to series.

‘Project parameters’ could include how strong a lead needed to be

to initiate a project, how strong the SAR was around the lead or

how long the project was allowed to run-on for without getting

closer to its target. Knowing which values are important and

getting a quantitative idea of what they are is essentially impos-

sible given the way the project information is currently recorded.

Because the empirical data for real projects are rather sketchy, a

better approach might be to model them using an underlying

theory of their behaviour. If such a description could be devised,

the door would open to producing simulations of projects, poten-

tially allowing project parameters to be explored in a controlled

way. A model would also provide a context, allowing a better

definition of the data needed to allow meaningful statistical

studies of the projects to be carried out.

What kind of properties does a project (as opposed to a set of

compounds) have anyway? The crucial distinction is temporal – a

project is a time-ordered series of compounds, with properties that

evolve over the course of the project [19]. The idea that compound

properties change as a project advances is not new; for example,

recent ideas about pharmaceutical ‘lead-likeness’ are based on the

observation that drugs become, on average, larger (increase in

molecular weight) as they move from lead to product [20,21]. This

might be regarded as a simple project trajectory – a path through a

descriptor space that varies with time. Molecular weight is a simple

molecular property and it would be interesting if the idea of

temporal change could be usefully applied to more complex

descriptors.

This article will propose that the idea of a project trajectory

through a complex descriptor space is reasonable [22] and useful

given the right representation of chemical space, that this trajec-

tory can be modelled using an elaboration of a standard random

walk (RW - see box 3 for glossary of abbreviations) and that these

walks can be used as the basis for simulating groups of projects in a

chemistry department. Some simple experiments with these pro-

ject models show that they can exhibit realistic behaviour and

provide some insight into the fundamentals of project manage-

ment.

Representing compound series for projects
An ideal chemical descriptor for this work needs to be sufficiently

complex to distinguish between closely related analogues in a

typical project, produce chemically sensible, quantitative simila-

rities between compounds and have some relevance to biological

activity (the main driver for most projects). Substructural finger-

prints [23–26] provide a rich way of describing compounds for

applications that depend on calculating the pairwise similarity
between molecules and these similarities have been shown to

correlate with biological activity [27–30]. Their high dimensional

nature (typically 1024 bits) precludes their direct use as a way of

visualising chemical space, but dimension reduction methods

such as Sammon mapping [31] can be used to produce a projection

suitable for display. Sammon mapping is designed to reproduce

inter-compound similarities with little distortion in the final map

[32], preserving the correlation with activity – active compounds

tend to cluster together in a Sammon map produced from finger-

print similarities [33]. The temporal dimension of a project can be

introduced into a static map by time-ordering the points and

applying a moving average [34] to the coordinates in each dimen-

sion. A moving average takes a fixed length window on a sequence

of numbers, averages the values in that window, moves the

window on by one step and repeats.

The trajectory is this series of averages for each dimension (a

window size of 50 was used for this work). The number of dimen-

sions needed to capture the behaviour of a series of related com-

pounds varies depending on the chemistry and the nature of the

target. The work on a small number of in-house projects has shown

that an in vivo, herbicidal biological response can be adequately

captured using two- to four-dimensional maps (i.e. the clustering

of compounds with similar biology does not increase by adding

more dimensions to the Sammon map). We have settled on 3D

maps as a reasonable compromise, accurate enough in most cases

and suitable for visual display.

The plots for real projects resemble protein chains (Fig. 1) –

extended, writhing patterns in space. A closer examination,

including a detailed statistical analysis of distributions of internal

coordinates [35] for 63 real project trajectories, reveals a structure

similar to a RW, an analogy we shall explore in the next section.

Self-avoiding walks
A RW is created by moving a point in discrete jumps in a random

direction [36], creating a trajectory from successive random steps.

RWs have been applied to many physical, chemical and economic

processes that involve some element of chance – Brownian motion

[37], polymer chain dynamics [38] and share price fluctuations

[39,40] being the notable examples. Indeed, the simplest reason-

able model of project trajectories in a descriptor space would be a

RW. This makes no assumptions about the project knowing where

it is going (if it did it would go straight to that point), just that it

has to move on at each step. Each new compound is usually closely

related to the last (projects do not hop randomly around the

entirety of chemical space) but the position of the target is

unknown – the project only knows it has hit its target after the

successful compound has been made and tested (Fig. 2).

A self-avoiding walk [41,42] (SAW) is a specific example of the

general RW, adding the constraint that the walk cannot intersect

with itself. This is reasonable as pharmaceutical companies spend a

lot of money on IT infrastructure to ensure that this constraint is

met. Newly synthesised compounds are registered in a database

[43] to make sure that precious chemistry resource is not wasted

making the same compound twice. Self-avoidance makes the

walks search for a solution more efficient. The difference between

a RW and a SAW is shown in Fig. 3 (for the remainder of this article

we shall consider walks with fixed length jumps on a square or on a

cubic grid because this simplifies the computer generation of
www.drugdiscoverytoday.com 199
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FIGURE 1

Four 3D moving average trajectories derived from real optimisation projects (two herbicide (a and b), one insecticide (c) and one fungicide (d)). The earliest
compounds in each sequence are coloured red, mid-sequence blue and end-sequence green. The start and end of each trajectory are marked by an enlarged ball.
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walks) – both walks have 21 steps, but in the pure RW the same

sites are hit repeatedly (RW only visits 9 sites in 21 steps), whereas

all 21 steps of the SAW are unique.

The SAW has a more thread-like structure with more widely

separated end points. A synthetic three-dimensional SAW is

shown in Fig. 3 and makes an interesting comparison to the real

project trajectories as shown in Fig. 1.

The analogy between a SAW and an optimisation project

becomes clearer if we consider how features of both map onto

each other. The start of the walk corresponds to the lead com-
200 www.drugdiscoverytoday.com
pound in a project, the target (a set distance from the start of the

walk) represents the state the project needs to reach to progress

and the distance from the end of the walk to the target is the

current state of the project as measured by its biological activity or

activity in combination with other experimental data (e.g. solu-

bility). A synthetic SAW has a limited number of well-defined

control parameters which have clear analogies to optimisation

project decisions – for example ‘stop an optimisation project if a

compound with better biology is not found in the next 50 synthe-

sised molecules’ becomes ‘terminate the walk if it does not come
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FIGURE 2

The simple randomwalk is coloured red, the self-avoiding walk blue. The start

of the walks is marked with a green circle, and the end with a green triangle.

BOX 1

1. Distance from starting point to target: How strong is the initial lead?

Varies between 1 (a strong lead) and 15 (a weak lead).

2. Target size: How easy is the target to hit? Size corresponds to the

radius of the target (size = 0 indicates a single point in space as a

target, ranges up to 10).

3. SAR strength around target: Can the project exploit SAR informa-

tion? The closest next possible step to the target is included twice in

the random draw on a proportion of the steps. This gives a bias to

the walk ranging between 0 and +67%.

4. Project run-on: How long can a project run without producing an

improved compound? Values range between 1 (a very aggressive

cut-off ) and 400 (projects can run on for a long time without

improvement).
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closer to the target in the next 50 steps’. A SAW has only two ways

of ending – a successful project/walk is one that finds its target,

while a failure is a walk that fails to get closer to its target quickly

enough and is terminated.

Simulating compound series
If one accepts SAWs as model for project behaviour, then it

becomes reasonable to produce computational simulations of
FIGURE 3

A SAW generated computationally on a 3D grid using a pseudo-random number ge

are marked and colour-coded as in Fig. 2.
individual projects on a simple cubic grid. Project simulation

can be done by generating multiple SAWs, applying control para-

meters to them and counting up the number of successes and

failures.

A simple simulation was set up with the four control parameters

shown in Box 1. Ten thousand walks were initiated with three of

the four parameters held constant while the other was system-

atically varied. The number of successful projects (SAW reaches

target) and failures (termination of SAW before reaching target)

was recorded together with the total number of SAW steps (each

step being a unit of synthetic chemical effort). These figures can be

combined in different ways, the most sensible being the number of

successes per step (SPS), the total number of projects (successes + -

failures) per step (PPS) and the number of successes per project

(SPP). Each figure highlights the different aspects of the process

(discussed below), but it is SPS that seems to capture the most
nerator. The walk was set to generate 1000 points before halting. The points

www.drugdiscoverytoday.com 201
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FIGURE 4

Graphs showing the changes in the number of successful projects per SAW step (SPS) plotted against (a) distance to target (lead strength), (b) target size (easy/
hard lead), (c) run-on (how long the project is allowed to continue without getting closer to its target) and (d) SAR (degree of structure activity bias, i.e. applied to

the walk).
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crucial aspect of performance in projects – successes for a given

amount of synthetic effort.

The effects of each of these parameters in isolation on SPS are

shown in Fig. 4.

SPS behaves monotonically with respect to the three target

based parameters. The number of successful projects drops away

exponentially with target distance, shows a more linear depen-

dence on SAR and a saturating effect with increased target size

(radius) – the target effectively changes from a point to a plane

with respect to the starting point (set at distance = 5), and further

increases have less effect.

The process-based parameter (run-on) is more interesting

because it shows a clear peak, indicating a trade-off between

two effects. What seems to be happening is that, initially, increas-

ing run-on allows a greater proportion of projects to succeed and

this offsets the effect of allowing projects that eventually fail to use

up more steps/effort. Because run-on is increased further the

second effect overwhelms the first and the SPS declines.
202 www.drugdiscoverytoday.com
These parameters can also, potentially, interact with each other

and, because chemistry departments usually run several projects

concurrently, with parameters connected with the structure of the

department. The individual simulations can be combined to create

a ‘virtual’ chemistry department using discrete event simulation

[44], which allows several projects to be run in parallel with

resource constraints. A simulation runs as a series of parallel jobs

that acquire, hold and release resources, events being recorded

against an internal clock. Each job competes for resources, waiting

if necessary. In this case the discrete event is the execution of a

project – the project holds on to its resource (chemistry man hours)

until it reaches a conclusion (success or failure). The time taken for

the project to do this (the number of steps in the SAW divided by

the amount of chemistry resource assigned to the project) is fed

back to the simulation which handles the book-keeping aspects of

the simulation (Fig. 5).

SimPy (http://simpy.sourceforge.net – a Python programming

language extension) allows discrete event models to be easily

mailto:john.delaney@syngenta.com
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FIGURE 5

A schematic diagram of a discrete event simulation of a chemistry department. Leads are assigned to one of the five project streams, initiating a project that runs

until it hits its targets or fails (red = success and blue = failure). The simulator shares out chemists to each stream. In this case, the lead source is assumed to be

prolific and no stream is ever left waiting for a fresh lead when its current project completes.
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created by handling synchronisation and resource allocation

issues allowing more complex systems to be built up – for example,

a portfolio of projects with different numbers of chemists working

on each.

The departmental simulation introduced three additional para-

meters shown in Box 2.

To fully explore a reasonable range of combinations, the para-

meters were assigned random values at the start of each simulation

run (Monte Carlo) and 3000 runs were performed.

The simulations highlighted some interesting effects. There was

interaction between some of the parameters, particularly at

extreme values. The most noticeable was between target distance

and project run-on – allowing projects to continue for longer in

the face of no improvement tends to increase the SPP (projects that

would have been chopped manage to turn around and hit their

target), while reducing the overall throughput of projects, PPS. The

magnitude of this effect depends on the target distance – for
BOX 2

1. Number of chemists in the department: more chemists allow more

compounds synthesised in a given time. Values range between 10

and 100.

2. Number of project streams: the number of independent projects

that a department runs in parallel. Ranges between 1 and 10.

3. Fixed cost of project initiation: setting up a project is not

instantaneous – delays can be caused waiting for reagents to

arrive, personnel to be redeployed, among others. Ranges between

0 (no delay) and 10 (a substantial wait to start each project).
example, combining a weak lead with an aggressive run-on cut-

off dramatically reduces the SPS because it becomes impossible for

any walk to generate improvement at a sufficient rate to avoid

being axed.

The departmental structure parameters showed little effect on

SPP, but a marked influence on PPS – essentially, the project

throughput – could be improved by, unsurprisingly, adding more

chemists or more project streams as well as by reducing the fixed

cost of setting up a project. None of this affected how probably any

one project was to succeed, but increased throughput did boost the

overall SPS figure, illustrating the important point that SPS is the

product of SPP and PPS. One interesting interaction between the

number of streams and fixed cost was also noted, because for small

number of streams the effect of changes to fixed cost became

amplified – a larger number of streams seemed to dilute the impact

of increased fixed costs. This is reasonable because, in extremis, a

single project stream has to halt completely as each project starts

up, whereas in multiple streams some work can continue most of

the time.

The most interesting result from aggregating all of the simula-

tions is the separation of the parameters into two roughly disjoint

groups. This becomes clear when SPP is plotted against PPS and the

points are colour-coded by a parameter value. Some parameters

show a strong variance with SPP, and others with PPS. Plots for SAR

and project run-on are shown in Fig. 6.

The effects of the control parameters are summarised in Fig. 7.

The crucial point to bear in mind is that the SPS is the key figure

of merit and it is the product of these two effects. This suggests that

there are at least two broad paths to improved performance – focus

on operational excellence to improve the process side of things, or
www.drugdiscoverytoday.com 203
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FIGURE 6

Results for 3000 simulations with randomly assigned parameters. The logged values of SPP and PPS are plotted against each other and the points colour-coded by

SAR (left) and run-on (right). Red points denote a high parameter value, moving through the spectrum of orange, yellow, green and blue/purple for low values. SPP

seems to vary more strongly with SAR, PPS with run-on.
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pick and choose your starting points to make the target easier to

hit. The results shown in Fig. 4 indicate that target distance has

the most drastic effect on SPS which, in turn, suggests that

focusing on the strength of the initial lead will bring the most

dramatic improvements in the overall process. Indeed, the

extent to which target/lead combinations are given in an orga-

nisation may limit the overall scope for improvement. There are
204 www.drugdiscoverytoday.com
also some potentially nasty combinations of parameters, parti-

cularly long target distance/short run-on and small number of

project streams/high fixed cost, which should be avoided. On a

more positive note, the simulations show that there is some

reward for improving fixed costs and obtaining better SAR

information, even if neither constitutes a knockout blow to

the problem of attrition.
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FIGURE 7

The simulation parameters fall into two groups – those broadly related to the properties of the target such as lead strength (distance) and those related to

decisions taken by the chemistry department (process) such as how long to allow projects to continue in the face of no improvement. The target group mainly

affect SPP while the process parameters are more important for PPS. The red and blue + ve/�ve signs denote whether the parameter positively or negatively
correlates with SPP/PPS.
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Conclusions
This article proposes that projects can be modelled using a SAW as

it seems to be the simplest model that manages to capture the

essential behaviour of an optimisation project. None of the evi-

dence gathered from real projects suggests that anything more

complex is required. Accepting this opens the way to simulating

projects and collections of concurrent projects run within a chem-

istry department. The simple simulations presented here indicate

that the factors controlling the success of such a department fall

into two broad categories, target and process.

The visualisations of real projects may be of use in themselves,

particularly if the points along the path were colour-coded by

activity. This might allow hotspots along the timeline to be

identified and those areas of chemistry revisited, particularly when

a project seems to have ended up in a cul-de-sac. At the very least it

provides an interesting summary of a whole project because it

evolves through time which is novel.

More elaborate RWs, incorporating variations in step length,

might provide a more realistic picture of how projects travel

through chemical space. A particularly interesting option would

be a Lévy flight [36] which allows occasional large jumps through

space, sometimes seen in projects when a larger piece of chemical

functionality is introduced into a series. Another aspect of the

model which could be altered is to allow the walk to branch.

Projects, finding themselves at a dead-end, could return to an

earlier, more active compound and use this to branch off in a

different direction.

How should one interpret a parameter like ‘distance to target’ in

the context of real projects? The change in biological response
with chemical distance can be readily determined by plotting

activity against distance from a point (distance seems to be pro-

portional to pIC50 and other bio-relevant physical properties

[45]). Target really means the right state (or states) which a project

must attain to progress to the next stage of development. In the

context of a drug this might mean identifying a compound

suitable for a pre-clinical trial. The strength of leads within a

department is usually characterised by a simple measure of bio-

logical response. In principle, it should be possible to use the

number of progressions from leads of various strengths to fit

the model to the data. This raises the problem mentioned in

the introduction of having poorly documented project outcomes,

though having a well-defined model should cut down the amount

of data required to produce a fitted model and may help to clarify

the questions we need to ask to improve this.

In the absence of a truly quantitative model, the trends them-

selves are useful. The sensitivity of the proportion of projects that

succeed to lead strength is striking and should give pause to

anyone working on weak leads, as should the interaction of this

parameter with very short run-ons. The different effects of target

and process are also interesting. One avenue that could be readily

explored through simulation is how best to assign chemists to

projects – given several projects running in parallel and in different

states with respect to their targets, should one place larger num-

bers of chemists on weak projects, or pile them into the stronger

ones? This problem has some striking similarities to optimal

betting strategies in gambling, particularly the Kelly criterion

[46] which relates to how much a gambler should wager on an

event based on his bankroll, probability of winning and the odds
www.drugdiscoverytoday.com 205
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BOX 3

Glossary

RW – Random walk, a random process consisting of a sequence of

discrete steps of fixed length.

SAW – Self-avoiding walk, a variant of the standard random walk on a

lattice that does not allow the walk to return to any previously visited

points.

SPS – Success per step. The number of walks that reached their target

during a simulation run divided by the total number of steps performed

during the whole simulation. Analogous to the number of successful LO

chemistry projects produced for a given amount of synthetic resource

(chemist hours).

SPP – Success per project. The number of walks that reached their

target divided by the total projects initiated during the simulation. Of all

the LO projects started, howmany were successful in progressing to the

next stage of development?

PPS – Projects per step. The total number of walks initiated divided by

the total number of simulation steps. The total number of LO projects

started for a given amount of resource.
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being offered. The Kelly criterion attempts to maximise the long-

term return over a long sequence of bets and it would be inter-

esting to see if maximising the Kelly return across parallel projects

is more efficient than assigning fixed numbers of chemists to each

project. Another potentially interesting simulation would be a

‘patent race’ where two SAWs are allowed to interfere with each

other in a race to the target – each has to avoid the others path as

well as their own. A reasonable question might be how much more

chemistry resource is needed to overcome starting behind a com-

petitor relative to operating in clear IP?

It is interesting to contrast this work with the molecular mod-

elling/QSAR techniques that have been applied to chemical series

in the pharmaceutical industry over the past 20 years [47]. Mole-

cular modelling attempts to reduce the randomness in the devel-

opment of bio-active compounds by predicting which molecules

should be made next to get the project closer to its target. This

approach attempts something fundamentally different – it takes

randomness as given and tries to transform ‘uncertainty’ (random-

ness with unknown probabilities) into ‘risk’ (randomness with

known probabilities) [48]. A properly parameterised version of the

model would allow the value of a project to be continually assessed

and compared. This creates an opportunity to exploit financial

engineering [49] techniques such as project insurance or real

options [50]. Large pharmaceutical companies tend to diversify

their portfolio of projects, spreading the risk. Could smaller com-

panies do the same by pooling their less diversified risks using

some form of project insurance, with well-defined risk? Real

options could be incorporated into the decision to allow a project

to continue – again, a good estimate of risk allows a better estimate

of the balance between abandonment and the chances that the
206 www.drugdiscoverytoday.com
next compound will move the project nearer its goal. Ultimately a

better understanding of the underlying mechanics of the optimi-

sation project should allow us to run portfolios of projects more

successfully (Box 3).
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43 Miller, M.A. (2002) Chemical database techniques in drug discovery. Nat. Rev. Drug

Discov. 1, 220–227

44 Banks, J. et al. (2005) Discrete-event System Simulation (4th edn), Pearson Education

45 Brown, R.D. and Martin, Y.C. (1997) The information content of 2D and 3D

structural descriptors relevant to ligand-receptor binding. J. Chem. Inform. Comput.

Sci. 37, 1–9

46 Kelly, J.L. (1956) A new interpretation of information rate. Bell Syst. Tech. J. 35, 917–

926

47 Richon, A.B. (2008) Current status and future direction of the molecular modeling

industry. Drug Discovery Today 13, 665–669

48 Knight, F.H. (1921) Risk, Uncertainty and Profit, Hart, Schaffner & Marx. Houghton

Mifflin Company

49 Luenberger, D.G. (1997) Investment Science. Oxford University Press Inc.

50 Villiger, R. and Bogdan, B. (2004) Real options are neither complicated nor

irrealistic. Drug Discov. Today 9, 552–553
www.drugdiscoverytoday.com 207


	Modelling iterative compound �optimisation using a self-avoiding walk
	Introduction
	Representing compound series for projects
	Self-avoiding walks
	Simulating compound series
	Conclusions
	Acknowledgements
	References


