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Regenerative medicine has rapidly evolved over the past decade owing to its potential applications to
improve human health. Targeted differentiations of stem cells promise to regenerate a variety of tissues
and/or organs despite significant challenges. Recent studies have demonstrated the vital role of the
physical microenvironment in regulating stem cell fate and improving differentiation efficiency. In this
review, we summarize the main physical cues that are crucial for controlling stem cell differentiation.
Recent advances in the technologies for the construction of physical microenvironment and their
implications in controlling stem cell fate are also highlighted.

Introduction
Regenerative medicine has rapidly evolved during the past decade
and opened up a new avenue to meet the demands for tissue and/or
organ transplantation in clinics [1], where stem cells have drawn
considerable attention owing to their unique capability to differ-
entiate into desired cell lineage and to self-renew. For example, stem
cells have been widely explored to repair defective and damaged
tissues such as cartilage (2], heart [3] and neural tissues [4]. Apart
from organ transplantation, the specific cell lineages derived from
stem cells also provide reliable cell sources for drug discovery and
development (e.g. target identification/validation and safety/meta-
bolism studies). For example, physiologically relevant hepatocytes,
derived from stem cells, as opposed to primary hepatocytes, can be
grown in a large scale and have better applications in toxicity tests
[5]. Therefore, there is a great need to grow a large number of
undifferentiated stem cells and to differentiate them into targeted
cell lineages, which remains elusive.

Constant efforts have been made to control the differentiation
of stem cells and to gain new knowledge of the underlying
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mechanisms. Accumulating evidence has indicated that the fate
of stem cells is highly affected by the microenvironment (also
called niche) where they are located. In physiological milieu, stem
cells encounter complex stimulations (e.g. physical, chemical and
biological cues) from surrounding cells and extracellular matrix
(ECM), which have significant effects on fate determination [6-8].
For instance, stem cell factor (SCF) expressed by neighbor cells is a
key constituent that maintains the pluripotency of hematopoietic
stem cells [6]. Thus, engineering stem cell microenvironment
would benefit the production of stem cells and subsequent differ-
entiation into cells of interest for biomedical and clinical applica-
tions.

Although it is well accepted that biological and chemical cues
(e.g. hormones, growth factors, and small chemicals) can signifi-
cantly influence cell functions [9-11], more and more evidence has
also shown that physical cues, for example mechanical properties
of growing substrate [12], topographical cues [13] and tension
force [14], also play an important part in controlling the fate of
stem cells. Recently, with the development of nano- and micro-
engineering technologies [15], reconstructing 3D physical micro-
environment in vitro with a spatiotemporal control becomes fea-
sible. 3D artificial constructs can mimic the native physical
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environment to some extent and thus hold great promise to
facilitate controlling stem cell fate in a directed manner when
combined with the presence of chemical and biological cues.
Although several good reviews have been published on the
topic of interactions between stem cells and physical cues [16-22],
most of them addressed the effects of material property on the
stem cell fate, namely cell-substrate interaction where they are
commonly uniform or static. Few review articles focus on engi-
neering approaches that can manipulate the physical microen-
vironment in vitro accurately and dynamically. In this review, we
mainly aim to introduce the state-of-the-art technologies for
engineering complex physical microenvironment with a focus
on the physical factors that affect stem cells in vivo. Specifically,
we first summarized the physical cues that can be potentially used

to regulate stem cell fate. Then we discussed how to engineer a
complex microenvironment with consideration of the important
physical cues.

Physical microenvironment of stem cells

Cells in vivo are exposed to a broad variety of physical cues
depending on their functions and locations. For instance, neurons
bear minimal mechanical loadings, muscle cells usually experi-
ence significant forces and endothelial cells are under shear stress
induced by blood flow. According to the nature of physical cues in
the ECM, we divided them into three categories including matrix
stiffness, mechanical force and topology. Besides, we emphasized
the presentation of these cues in a spatiotemporally dynamic
manner (Fig. 1).

Strain force

Mechanosensitive
ion channels
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Cell-cell
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FIGURE 1
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Native physical microenvironment and mechanosensors of stem cells. The stem cells in vivo are subjected to a broad variety of physical cues, including matrix
stiffness, mechanical forces (e.g. strain force and shear stress) and topography, mostly in a spatiotemporally dynamic manner (spatial gradients).
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Matrix stiffness

Matrix stiffness is defined as the degree that an extracellular
scaffold resists deformation. Tissues in vivo possess a broad range
of mechanical properties, and are tailored to function at varying
mechanical demands. For example, adipose tissue is a soft cushion
for vital organs, whereas bone is a rigid protector and mechanical
support for body. The homeostasis of stiffness within a tissue is
important for its biological functions, whereas its alterations are
usually associated with dysfunction. Thereby, the varying stiffness
of ECM within different tissues is crucial to differentiate stem cells
into specific cell lineages. Additionally, matrix stiffness is of great
importance during embryogenesis in vivo. For instance, during the
gastrulation of Xenopus laevis the convergence and extension
movements can occur only if the notochord and mesoderm are
stiff enough to withstand buckling [23,24]. The involuting mar-
ginal zone becomes stiffer and thus does not deform or collapse
during gastrulation [25], indicative of the significance of stiffness
to cell function.

Mechanical forces

Mechanical forces are also a vital stimulus during embryogen-
esis and throughout life [26]. The forces at the cellular level can
be classified into two categories, namely internal forces and
external forces [27]. Internal forces are defined as a contractile
force arising from the cellular actomyosin cytoskeleton, whereas
external forces refer to the force acting from the outside of cells.
Although internal forces are also important for cell functions,
we will not discuss it here because it is beyond the scope of this
review in the perspective of engineering cell microenvironment.
Physiological actions such as blood flow, muscular movement,
gravity bearing and other processes generate different external
forces to cells, such as compressive forces, stretch forces and
shear stress. These mechanical forces are also found to be crucial
to determine the fate of stem cells in vitro. For instance, shear
stress has been found to drive the differentiation of embryonic
stem cells (ESCs) toward vascular endothelial cells [28], whereas
the stretching of mesenchymal stem cells (MSCs) results in
upregulation of specific markers as seen in smooth muscle
cells [29]. Therefore, mimicking the mechanical forces that
stem cells experience in vivo is desirable to control the fate of
stem cells.

Topography

Native ECM presents various geometrically defined physical
boundaries through composition and structure (i.e. topographies).
The components of the ECM can be arranged into structures such
as fibers and sheets that support cells and regulate their function
[30-34]. Take intestinal mucosa for example, it consists of epithe-
lial folds (i.e. villi) with a dimension of 400-500 pm [35,36] and
epithelial invaginations (i.e. intestinal crypts) with dimensions of
100-200 pm. The basement membranes under the intestinal
mucosa are composed of 50-nm-thick collagen fibers. Nanoscale
structures (e.g. collagen fibers) interact with cell receptors and
affect protein clustering and organization, whereas microscale
structures change the curvature of the cell membrane [37]. Both
of these structures can affect cytoskeleton assembly, alter internal
forces and influence stem cell behaviors [37]. In vitro, the topo-
graphy of the extracellular microenvironment can affect the

responses of stem cells during the process of attachment, migra-
tion, differentiation and formation of new tissues [19].

Spatiotemporal dynamics

Biophysical and biochemical signals can not only play an important
part in controlling cell functions but also significantly affect tissue
development and regeneration via forming dynamic concentration
gradients in a spatial-temporal manner [38,39]. For instance, inves-
tigations of zebrafish embryogenesis uncovered the underlying
spatial and temporal dynamics of molecular gradients (e.g. retinoic
acid and the Ntla transcription factors) during embryonic develop-
ment [40,41]. In addition, the gradient of some small molecules
such as H,O; generated during wound formation in zebrafish helps
recruit leukocytes to the wound zone [42]. The effect of the dynamic
microenvironment on cell behavior has been studied in vitro.
Mechanical force gradients were also observed in the micropat-
terned epithelial monolayer. Such a force gradient drives cell
motions and the propagation of the gradient (termed mechanical
wave) plays a central part in epithelial expansion during the devel-
opment of organ shape [43]. In addition, the spatiotemporal micro-
environment can also regulate cell behavior at micro- and/or nano-
meter scales. Alignment of humans mesenchymal stem cells
(hMSCs) is sensitive to the dynamically and reversibly changed
topographies achieved through strain-responsive buckling patterns
on polydimethylsiloxane, which demonstrated the importance of
dynamic topography [44]. Besides, it is well known that cells grown
on substrates with a stiffness gradient will migrate to stiffer areas
[45], indicative of the importance of mechanical gradients.

Approaches for engineering physical microenvironment to
control the fate of stem cells

Studies on stem cells over the past two decades have shown that
engineering the physical microenvironment could facilitate
addressing the challenges in controlling the stem cell fate. A
variety of approaches have been developed to create microenvir-
onment in vitro including material-based approaches, mechanical-
force-based approaches and micro- and/or nano-fabrication-based
approaches (Fig. 2).

Material-based approaches

With advances in material science, a variety of materials including
polymers, ceramics and metals have been developed to match the
diverse elasticity of tissues in vivo, mimicking the physical micro-
environment where stem cells are surrounded (Fig. 2).

Polymers. With advances in polymer science, natural and syn-
thetic polymers with tunable properties have been developed,
providing more options for the control of stem cell fate [46].
The mechanical properties (e.g. stiffness) of polymers can be tuned
from 0.1 kPa to 1 MPa, making it attractive for tissue engineering
and regenerative medicine. The natural polymers commonly have
relatively lower stiffness (0.01-100 kPa) than synthetic polymers
(10 kPa to 1 MPa), therefore they are more suitable to mimic soft
niches. In addition, many of these natural polymers (such as
hyaluronic acid and chondroitin sulfate) exist in vivo and play
an important part in stem cell differentiation. However, there are
still some challenges associated with most natural polymers when
used in vivo, including weak mechanical properties and potential
immunoreaction risks.
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FIGURE 2
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Schematic representation of approaches for controlling stem cell fate with physical cues. The stem cell fate (i.e. self-renewal and differentiation) is affected by
spatiotemporal physical microenvironment. There are three approaches to engineering physical microenvironment in vitro including material-based approaches,
force-based approaches and micro- and/or nano-fabrication-based approaches. Abbreviation: ECM, extracellular matrix.

Ceramics and metals. Owing to high mechanical properties,
ceramics and metals exhibit as good substrates for the osteogenic
differentiation of stem cells. The most commonly used ceramics
include calcium phosphate ceramics, bioactive glass and hydro-
xyapatite. When cultured on the surface of calcium phosphate
ceramics, MSCs displayed a stable osteoblastic phenotype with the
formation of apatite in the ECM [47]. Hydroxyapatite is a naturally
occurring ceramic mineral found in bones, and it has been widely
investigated as a bone substitution. This kind of materials can
adsorb proteins strongly, and thus benefit the adhesion, prolifera-
tion and differentiation of MSCs [48]. Bioactive glass, which is
composed of phosphate oxide, calcium oxide, sodium oxide,
calcium oxide and silicon dioxide, has a high compatibility with
bone tissues and it is usually used as defect fillers. MSCs grown on
this material demonstrated an osteoblastic phenotype with

mineralized ECM, indicative of the promoted differentiation of
MSCs into osteoblasts [49]. Titanium is another type of material
that has been widely used in dental and orthopedic surgeries
owing to its good biocompatibility and inertness. Titanium sub-
strates (i.e. titanium dish) can favor stem cell adhesion, prolifera-
tion and differentiation [50]. Embryonic bodies (EBs) were also
observed to form effectively in 3D titanium scaffolds with obvious
cell-matrix interactions [51].

Regulation of stem cell fate by substrate stiffness. Engler et al. laid
the foundation of how physical cues direct stem cell differentia-
tion by culturing hMSCs on hydrogel substrates with different
stiffness [52]. The proteins and transcription profiles were ana-
lyzed to reflect the impacts of stiffness on stem cell fate. Stem cells
expressed significant neural markers on softer materials (0.3 kPa),
whereas osteogenic markers were observed on a rigid substrate
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(35 kPa). Stiff hydrogel substrates enhance the growth and devel-
opment of force sensors (focal adhesion). These sensors transfer
the cell-substrate force into the cell signal pathway and then
adjust cell-ECM interaction via actin-myosin contractions. As a
result, cells grown on a stiffer hydrogel substrate presented a more
highly tensed state. The generated forces on the cell actin cytos-
keleton contributed to regulating the differentiation of stem cells
into an osteogenic lineage. Subsequent studies also illustrated the
importance of substrate stiffness on stem cell fate [53,12,54].
Further, it was found that a substrate with a proper stiffness was
crucial to maintain the ‘stemness’. For instance, muscle stem cells
grown on a rigid Petri dish lose their pluripotency, resulting in
decreased regenerative capability in their progenitors. To address
this challenge, hydrogel-coated plastic dishes with different stiff-
ness (2, 12 and 42 kPa) were used to culture muscle stem cells. On
softer hydrogel substrates the number of muscle stem cells
increased twice after a week, whereas the number remained con-
stant when cultured on a rigid Petri dish, indicating an enhanced
cell survival and proliferation by soft hydrogels [53].

Mechanical-force-based approaches

Cyclic strain. Cyclic strain can be applied to stem cells in vitro and
affect their differentiation pathways. This effect depends on the
strain amplitudes, frequencies, load means and cell types. Com-
monly, stem cells are cultured on a flexible membrane (which can
be coated with various proteins or not), on which uniaxial or
biaxial strains are applied at a constant frequency. For instance,
the differentiation behavior of MSCs under cyclic strains has been
widely investigated using this system. MSCs encountering a 5-
10% uniaxial stretch showed a typical myogenic phenotype
accompanied with the expression of myogenic proteins (e.g.
smooth muscle actin) [55-57]. By contrast, such a phenotype
was not observed when the applied strains were lower than 1%
or higher than 15%, suggesting the importance of strain magni-
tude during MSC differentiation [58]. In addition, different cell
types such as adipose-derived stem cells responded differently to a
similar strain (10%) [59]. Uniform biaxial stretch was found to
enhance osteogenic differentiation of MSCs with an increased
expression of osteogenic-specific markers [60]. Cyclic compression
was usually achieved by loading a pressure on 3D hydrogels
encapsulating stem cells. For example, dynamic compression of
a MSC-laden 3D agarose hydrogel was used to study the mechan-
ical responses of stem cells. Under mechanical stimulus, an
increase in aggrecan and collagen II transcriptional activity was
observed, indicating that a chondrogenic differentiation was
induced by mechanical compression [61].

Shear stress. Shear stress can be created either by a stir-based
method [62] or pump-based method [63]. In the stir-based method
stem cells are seeded and then attached to a substrate of interest.
The apparatus for stress creation consists of a rotating disk driven
by a motor and a stage to adjust the distance between cells and the
disk. The shear stress can be controlled through angular velocity of
the disk and cell positions. In a pump-based method, a pump and a
parallel plate apparatus are used to create shear stress. The con-
figuration of a parallel apparatus (such as height and width) and
the velocity of fluid are the determining factors to the final shear
stress applied to the cells. Based on these platforms, the effects of
fluid shear stress on stem cell functions have been widely studied

[64-67]. For instance, two days after the shear stress was applied,
an increased expression of endothelial markers and formation of
vessel-like structures were observed for mouse ESCs, indicating
that shear stress promotes the differentiation of mouse ESCs
toward the endothelial-like phenotype [63]. These findings impli-
cate that the design of bioreactors, accompanied with complex
shear stress, is important for a scale production of stem cells and
targeted differentiation.

Micro- and nano-fabrication-based approaches

Emerging micro- and/or nano-scale engineering technologies offer
unprecedented opportunities for the creation of cell microenvir-
onment in vitro that recapitulates the crucial cues in vivo, such as
spatiotemporal physical and chemical gradients, surface topogra-
phy and dynamic mechanical microenvironment. Here, we sum-
marize three kinds of strategies that have been used to engineer
complex stem cell niches: bottom-up assembly, topography pat-
terning and organ-on-a-chip.

Bottom-up assembly. The bottom-up approach was firstly pro-
posed to construct intricate microstructural features of the cell
microenvironment by designing specific structural features on
microscale modules [68,69]. Emerging methods in recent years
hold great potentials to engineer heterogeneous physical cell
milieu (Fig. 3). For instance, an electrostatic-force-based platform
has been developed recently to assemble microgels into various
patterns with a control over final architectures [70]. By incorpor-
ating biomaterials with positively and negatively charged hydro-
gels, the biomaterials with opposite charges are attracted to each
other (Fig. 3a), which could be used to assemble biomaterials with
different physical properties. To improve the recognition effi-
ciency between microgels, DNA was used as a glue to direct the
self-assembly of microgels into prescribed structures [71]. Owing to
the high recognition efficiency of DNA, 50 distinct microgels were
assembled into 25 predesigned pairs in a simple mixing process
(Fig. 3b), demonstrating the capability of multiplexing microgel
assembly in a single system. Additionally, another multilayer
photolithography was developed to engineer digitally specified
3D spatial confinement on stem cells [72]. By switching multiple
masks with microscale controls, ECM components and cell types
can be modulated easily (Fig. 3c). Particularly, ESCs and two other
types of cells were aligned to mimic the complex process of
myocardium regeneration. Based on a similar principle, hetero-
geneous differentiation of EBs was investigated through the fab-
rication of two kinds of hydrogels around a single EB [73].
Moreover, the paramagnetic property of microgels was revealed,
and the microgels were manipulated temporally and spatially
without the need for other magnetic components (e.g. magnetic
nanoparticles) (Fig. 3d) [74]. Taken together, the rapid develop-
ment of bottom-up assembly methodologies provides a simple,
low-cost and highly accurate way to recreate stem cell niches in
vitro, especially with asymmetrical architectures.

Topography patterning. Nano- and micro-patterned surfaces have
gained increasing importance in the design of biomaterials for
regenerative medicine, as reviewed [19,75]. Numerous technolo-
gies, such as electron beam and nanoimprint lithography, have
been developed to recapitulate the topography in vivo and mod-
ulate the cell function in vitro [76]. For example, the electron beam
lithography has been used to fabricate an assay of nanopits that
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FIGURE 3

Bottom-up assembly of physical microenvironment in vitro. (a) Assembly of microgels based on electrostatic force [70]; (b) DNA-glue-based assembly of microgels
with high recognition efficiency [71]; (c) construction of heterogeneous microenvironment for embryonic stem cells (encapsulated in microgels) by multilayer
photolithography [72]; (d) paramagnetic levitational assembly of microgels [74].

allowed the maintenance of multipotency of MSCs [77]. More
recently, some effective microfabrication methods have been
developed to avoid the use of expensive and complex nanofabri-
cation techniques. Reactive ion etching was combined with stan-
dard photolithography and used for patterning nanoarchitecture
on glass substrates with precise control [78]. The features of
nanoarchitectures (i.e. shape, diameter, height, and distribution)
are the key regulators for various cell behaviors, including cell
adhesion, proliferation, self-renewal and differentiation. Micro-
scale topography can also regulate the behaviors of stem cells
(Fig. 4a). Microscale contact patterning of adhesive proteins
(e.g. fibronectin) to a nonadhesive surface makes it possible to
control the 2D cell geometry [79] and study its effects on the
commitment of stem cells into different linages. The geometry

parameters such as shape, area, aspect ratio and curvature signifi-
cantly affect the differentiation commitment of stem cells. Take
human MSCs for example, they tend to differentiate into adipo-
cytes when having a small adhesion area (~1000 wm?), whereas
they tend to differentiate into osteoblasts when having a larger
adhesion area (~5000 wm?) [80]. 3D structures, for example micro-
groove [81], micropost [82] and microwell [83], are also important
to direct the differentiation of stem cells. For example, the size of
EBs can be controlled using microwells with designed dimensions,
which has been shown to affect the WNT signalling pathway and
subsequent differentiation [84].

Organ-on-a-Chip. Organ-on-a-Chip is defined as the reconstitu-
tion of native tissues within a microfluidic device that aims to
study the physiology of a specific organ or to develop disease

768 www.drugdiscoverytoday.com



Drug Discovery Today * Volume 19, Number 6+ June 2014

REVIEWS

(a) Actin organization

Sizes

Scale bar: 10 um

Nanoscale

Ridge: 150 nm y

Groove: 50 nm
Height: 200 nm

Nangroove

(b) Collagen fi

g

ril density gradient
R 7 )

FIGURE 4

Cell geometry

Aspect ratio

Surface topography

Pl —
<100

Mircropattern

EB differentiation

Scale bar: 500 um

Microscale

Microwell

100 um
Drug Discovery Today

Topography engineering and microfluidic technologies for recapitulation of physical cues in stem cell niche. (a) Engineering topography in cell microenvironment
from nanoscale to microscale [79,83,127]. (b) Collagen fibril density gradient generated from microfluidic device [90]. Abbreviations: DAPI, 4',6-diamidino-2-

phenylindole; EB, embryonic bodies.

models in vitro [85]. With the rapid development of microfluidic
technologies [86-88], mounting evidence shows that the micro-
fluidic platform is a powerful tool to engineer physical niches of
cells including flow-induced shear stress and cyclic strain [85,89].
Besides, microfluidic devices can be used to create spatial gradients
in physical and biochemical aspects. Flow convection in a micro-
channel has been used to generate gradients of polymers, cells,
particles and molecules, where the fluid was pumped fast while
alternating flow directions (i.e. pumped and withdrawn) [90]. For
instance, a density gradient of collagen fibril (Fig. 4b) was achieved
by pumping a collagen solution at a higher concentration (3.8 mg/
ml) into a channel embedded with a collagen solution with a lower
concentration (0.5 mg/ml) with alternating flow. The gradient of
cell-adhesion ligand (Arg-Gly-Asp-Ser) was also generated based on
the similar principle to study the cell-material interactions [91].
3D gradients of cell density within a collagen hydrogel were
generated using a staggered herringbone microfluidic mixer
[92]. Using this method, linear, exponential and other geometrical
gradients could be potentially achieved through different micro-
fluidic designs. Opposing gradients of two cell types including

stem cells and osteoblasts were generated in 3D collagen hydrogels
that can potentially be used to mimic the bone marrow micro-
environment and to study the effect of stromal cell (i.e. osteo-
blasts) gradient on stem cell behaviors. Another 3D stiffness
gradient within a hydrogel was established in a tube using two
mixing pumps to study the effects of 3D stiffness gradient on the
stem cell fate [93]. MSCs cultured in softer regions had a higher
proliferation rate compared with those in stiffer regions [93].
State-of-the-art biojet technologies. Although the aforementioned
approaches have been used to recreate physical microenvironment
of stem cells for years, they are far from any clinical usage because
of tedious pre-processing steps and low throughput [94,95]. Con-
ventional cell printing approaches such as inkjet technology and
laser-directed writing have shown intriguing abilities to mimic
various physiological situations during the past decades [96-102].
However, they are suffering from the limited spatial resolution and
the shortage of sufficient biological assessment [103]. The emer-
ging newly developed biojet technologies have recently led to
many significant findings in regenerative medicine and have
undergone complete biological assessment, indicating a great
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possibility in clinical application. Here, we briefly introduce these

technologies including cell electrospinning, bio-electrospraying

and aerodynamically assisted biojetting and threading.

® Cell electrospinning and bio-electrospraying. Electrospinning and
electrosprays basically exploit a potential difference between
two charged electrodes to draw a liquid jet that either generates
continuous fibers or droplets, respectively [104,105]. The basic
principle of this process relies on the movement of charged
liquid in the electric field existing between two charged
electrodes. The charging liquid is driven by an electric force,
exiting a needle toward the grounded electrode. Compared
with conventional cell printing approaches, these technologies
can fabricate droplets and fibers at a nanometer scale (~50 nm)
and they are compatible with large concentrations of materials
in suspension, or liquid with high viscosity (~10,000 mPas).
Besides, these two technologies have been well evaluated and
developed by Jayasinghe’s group at University College London
in technological and biological views [106-115]. First, they
have shown that these two technologies can work with a broad
range of cell types from stem cells to whole blood cells and
demonstrated their ability to control cell spatial distribution
within droplets or fibers. Second, the effects of this fabrication
process on cell function have been studied at the cellular and
molecular levels, and the feasibility of fabricated construct for
translation was demonstrated in mice. Owing to the vast
perspective in synthetic organotypic tissue engineering, these
technologies are now known as bio-electrospraying (BES) and
cell electrospinning (CE). It has been validated that BES and CE
are capable of handling heterogeneous cell populations at high
cell densities and of controlling cell distribution in 3D. In
addition, BES and CE can directly handle complex multicellular
organisms without altering their biological developments (such
as Danio rerio and Drosophila melanogaster at their early
development stage) [116,117]. Moreover, studies have shown
their capability to construct various cell-bearing structures that
can potentially be used in clinical application. For the sake of
complete assessment of any possibly missing cellular aspects
during previous in vitro studies, these cell-laden structures are
engrafted into mice to form a wide range of tissues, which
demonstrated that these two technologies are completely inert
to the cell function [109].

® Aerodynamically assisted biojetting and threading. Aerodynami-
cally assisted biojetting (AABJ) is a very versatile technique,
which has widespread biological applications such as printing
cells and tissues. In this system, droplets are squeezed out from
an exit orifice of a chamber by a pressure differential generated
through either a gas or liquid. Specifically, a high pressure
within the chamber is initially generated relative to the
atmosphere. Then, the medium reserved in designed needles
is drawn into a liquid filament under a high pressure, exiting
the orifice. Over the past decade, AABJ has been used to handle a
wide range of cells and whole organisms, and the functional
studies have also been investigated in vivo. For instance, AABJ-
treated splenic cells are capable of homing to lymph nodes after
transplantation into mice, indicating that AABJ does not alter
splenic cells functionally [118]. However, to date, this
technique is still under further evaluation (explored with other
animal models) before it can enter preclinical studies [119-121].

Concluding remarks and future perspectives

The regulation of stem cell fate in vivo remains largely unknown.
The investigation of this topic requires a multidisciplinary
convergence including biology, chemistry, engineering, physics
and material science. Mounting evidence demonstrates that the
fate of stem cells is not only controlled by heredity but also by
the microenvironment. The ideal microenvironment is a com-
bination of various cues in a spatiotemporal context, including
specific ECM proteins, appropriate stiffness and force, and ade-
quate topography, among others. It is challenging to guide stem
cell behaviors by engineering only physical microenvironment,
because biological cues are also profound in regulating the
differentiation of stem cells. However, research in physical
microenvironment is deeply helpful to understand the beha-
viors of stem cells and to design materials and/or bioreactors for
regenerative medicine. Recent advances in micro- and/or
nanoengineering technologies endow the ability to recapitulate
the complexity of the native stem cell microenvironment such
as heterogeneity and physical and chemical gradients, which
makes it possible to study their roles in stem cell differentiation
and to provide useful platforms for a broad range of biomedical
applications.

Most current studies on physical microenvironment were per-
formed using a 2D model where cells are cultured in monolayers. It
is well known that stem cells reside in a 3D microenvironment in
vivo and that a 2D system cannot recapitulate the innate char-
acteristics of stem cells. For cells grown on 2D hydrogels the
stiffness of substrate can affect cell adhesion, spreading and fate.
In addition to stiffness, stem cells can also be influenced by
geometric constraints on cell adhesion, leading to limited tension
generation and cell spreading. So far, how stem cells respond to 3D
physical cues still largely remains unclear. Emerging studies have
shown that stem cells behaved differently in 3D physical niches.
For instance, the morphology of MSCs was independent of matrix
stiffness and remained rounded throughout the differentiation
process when MSCs were encapsulated into nondegradable algi-
nate hydrogels [122]. MSCs migrated on a 2D substrate with a
stiffness gradient [123], whereas no migration was observed in
matrix with a 3D gradient [93]. Therefore, the investigation of
stem cell behaviors in 3D physical niches is desirable in the future
with the aid of emerging approaches for engineering 3D micro-
environment.

The dynamic properties of 3D microenvironment (i.e. spatio-
temporal context) also play a significant part during embryonic
development and throughout the whole life. To date, several
studies have shown that stem cell behaviors can be regulated by
the dynamic changes of 3D microenvironment [124-126]. For
instance, the phenotypes of hMSCs encapsulated in hyaluronic
acid hydrogels can be regulated from osteogenesis to adipogenesis
by changing the ratio of mixed hydrogels [124]. This study indi-
cates that the traction force rather than the monomer of hydrogel
mediates the fate of stem cells encapsulated in a 3D nondegradable
hydrogel, providing insights into how stem cells interact with
their surroundings in 3D milieu and highlighting the significance
of degradability in the 3D microenvironment. However, the
mechanism of how the dynamic microenvironment affects stem
cell fate is still unknown. Therefore, future research is needed to
design exquisite and dynamic 3D microenvironments so as to
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unravel further the function of biochemical and biophysical cues
and subsequently to induce targeted stem cell differentiation.
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