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Getting physical in drug discovery II:
the impact of chromatographic
hydrophobicity measurements and
aromaticity
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Here, we review the performance of chromatographic hydrophobicity measurements in a data set of

100 000 GlaxoSmithKline compounds, demonstrating the advantages of the method over octanol–water

partitioning and highlighting new insights for drug discovery. The value of chromatographic

measurements, versus other hydrophobicity estimates, was supported by improved relationships with

solubility, permeation, cytochrome P450s, intrinsic clearance, hERG binding and promiscuity. We also

observed marked differentiation of the relative influence of intrinsic and effective hydrophobicity. The

summing of hydrophobicity values plus aromatic ring count [log DpH7.4 (or log P) + #Ar], indicated a

wide relevance for simplistic ‘property forecast indices’ in developability assays, clearly enhanced by

chromatographic values; therefore establishing new foundations for enriching property-based drug

design.
Introduction
The optimisation of physical properties is fundamental to the drug

discovery process [1,2] and central to this is the measurement and

prediction of hydrophobicity [3]. Hydrophobicity (or its etymo-

logical synonym, lipophilicity) is an appraisal of the preference for

a compound to reside in a hydrophobic versus aqueous environ-

ment. Investigations into the dispersion of molecules between

aqueous buffers and organic solvents led to the establishment of

OW (see Glossary) as the gold standard for measuring the partition

(usually expressed as log P) or distribution (log D at a given pH) of

molecules [4,5].

Log P represents the intrinsic hydrophobicity of a compound

and is a constant for a given solvent system. The log P of a

molecule with an ionisable centre will only be measurable when

the compound bears no charge. Log D is the effective hydropho-

bicity of a molecule and relates to the distribution of all species

present at a given pH and, thus, is not a constant. The partitioning

of a given molecule is readily predictable by summation of the

incremental contributions of component fragments, originally

derived from measured values [5,6]; inclusion of pKa values enables

the prediction of distribution at any pH.
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Many computational packages are now available to predict log P

and log DpH for any given molecule and these values have been

widely used in medicinal chemistry to rationalise structure–prop-

erty relationships, in predictive design and in the generation of

predictive models [7]. Hydrophobicity is almost invariably at the

very core of these predictive processes [5] and an optimum range

for drug molecules is apparent from analyses of various develop-

ability parameters [7]. Nonetheless, contemporary reviews indi-

cate an ongoing tendency towards increased hydrophobicity

values in drug candidates [8], despite the demonstrable risks

and lower probability of success associated with such molecules

[9]. These inflated values, termed ‘molecular obesity’ [10], have

been attributed to misguided pursuits of in vitro potency, often at

the cost of poorer pharmacokinetic profiles [11]. Such reviews have

focused on predicted physical data, most usually clog P, which

have established trends and enabled the formulation of predictive

models and rules. These parameters have been combined into

visualisation tools, which aid medicinal chemistry optimisation

by identifying preferred regions of chemical space; for example,

the Golden Triangle of Johnson et al. [12], the 3/75 rule of Hughes

et al. [13] or the 4/400 of Gleeson [14].

We recently highlighted shortcomings of the OW model

in contemporary drug discovery in a set of compounds with
ee front matter � 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2011.06.001
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GLOSSARY

AMP artificial membrane permeability
c calculated
CCP comprehensive compound profiling
CHI chromatographic hydrophobicity index
Chrom chromatographic
Clint intrinsic clearance
CLND ChemiLuminescent nitrogen detection
GSK GlaxoSmithKline
HSA human serum albumin
hERG human Ether-a-go-go Related Gene
iPFI intrinsic Property Forecast Index (i.e. Chrom log P + #Ar)
log DpH log10 (distribution coefficient at the given aqueous
buffer pH)
log P log10 (partition coefficient)
m measured
OW octan-1-ol/water (implicitly octan-1-ol/aqueous buffer)
Pgp permeability glycoprotein
PFI Property Forecast Index (i.e. Chrom log DpH7.4 + #Ar)
SFI Solubility Forecast Index
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measured OW hydrophobicity plus solubility data [15]. Therein,

the key observation was that, for poorly soluble compounds

(measured solubility <30 mM), measured hydrophobicity values

in the OW system are effectively meaningless. Implicit in this

analysis was that more hydrophobic molecules are likely to be less

soluble and would thus have unreliable OW log D values. Addi-

tionally, an upward trend in the numbers of aromatic rings in drug

candidates has been noted [16] and this further reduces solubility.

The detrimental effect of aromatic ring count on solubility, over

and above its contribution to increased hydrophobicity, is demon-

strated by our proposed ‘Solubility Forecast Index’ (SFI) [15].

Further questions have been raised as to why OW remains the

standard method in contemporary drug discovery [17], despite the

widespread availability of alternative higher throughput methods

for hydrophobicity determination [18,19].

The automated CHI measure of hydrophobicity [20] has been

used alongside OW shake flask determinations for several years

at GSK. CHI log D values [21], where CHI log DpH = CHIpH �
0.0525 � 1.467, show significant correlation with both measured

(OW) and predicted log DpH7.4 values (e.g. ACD software, version

11.0, which is used in this review), albeit with a compressed scale

and cross over between the values.a The utility and impact of this

parameter has been demonstrated in several programmes at GSK

[22–24]; however, exploitation of these data has been sporadic,

perhaps owing to disconnects between actual values and smaller

incremental changes versus the octanol scale. Consequently, CHI

data were reanalysed, leading to the establishment of a modified

conversion factor with a rescaled output. This new parameter,

reported as chromatographic log D (mChrom log DpH = CHIpH �
0.0857 � 2) gave both similar linear increments and a normally

distributed dynamic range comparable with those observed

with OW predictions.a A disconnect between measured Chrom

log DpH7.4 and measured OW log DpH7.4 values is illustrated in

Fig. 1a, where the skewed distribution and narrow range for OW
a Further supporting/illustrative data are presented in the supplementary
material online.
values is clear, producing a poor correlation at the more hydro-

phobic end of the scale, consistent with our previous observations

with calculated versus measured OW data [15]. A consequence of

the scaling used was a positive offset of approximately two log

units, making Chrom log DpH7.4 values higher than traditional

OW values. In practice, this offset was retained to highlight the

different origins of the data. Subsequently, an in-house predictor,

cChrom log DpH7.4, has been developed, which provides enhanced

hydrophobicity predictions (Fig. 1b).

The determination of chromatographic partition coefficients

has been achieved by additional measurements at pH 2 and pH

10.5. It is reasonable to assume that the maximum hydrophobicity

value obtained at these pH extremes is that of the unionised form

of the compound and provides a measure of log P [21]. Chrom

log P measurements on approximately 8000 compounds (includ-

ing ionisable examples) gave a better correlation (R2 = 0.51) and

alignment with Daylight clog P (using Daylight software v4.9),a

than that observed for OW measurements of unionised com-

pounds in this set (R2 = 0.30).

To explore the utility of chromatographic measurements, their

impact across a range of developability assays where hydrophobi-

city is known to have a strong influence, was investigated. The set

of 100 000 compounds used previously [15] was further annotated,

so all had measured CLND solubility in addition to Chrom

log DpH7.4, although varying proportions had been through all

of the developability assays. An analysis of whether effective

hydrophobicity (log DpH), or intrinsic hydrophobicity (log P)

had the greater influence in a particular assay, was a secondary

objective. Third, the summations of log DpH7.4 + #Ar or log P + #Ar

were investigated to explore the potential wider impact of our

proposed ‘Forecast Indices’ beyond that observed with solubility.

Presentation of data
The distributions of values and trends therein were conveniently

conveyed through normalised bar graphs, effectively showing the

probability of achieving a particular outcome in each bin; these are

used in the main text and the numbers above the bars indicate the

number of values in each bin. Additional forms of analysis are

included in the supplementary data available onlinea; box–whis-

ker plots were used to demonstrate statistical significance in

observed trends; categorised multiple pie charts, using binned

hydrophobicity and/or other descriptors, gave a clear indication

of where parameters showed independent effects over and above

any correlation between them. These plots gave impactful and

visually appealing representations of the data, highlighting clear

trends in a form readily interpretable by medicinal chemists,

without recourse to multivariate data analysis.

Solubility
When comparing the differentiation between kinetic solubility

classes achieved with Chrom log DpH7.4 and OW data, a statisti-

cally significant improvement was observed with the former, as

would be expected by extension of previous findings [15], Indeed,

the categorised multiple pie representation,a incorporating

Chrom log DpH7.4 values and the number of aromatic rings, gives

a better differentiation in comparison with the same plot using

calculated ACD log DpH7.4 [15]. The latter was the basis of the

proposed SFI (clog DpH7.4 + #Ar), which is enhanced by using the
www.drugdiscoverytoday.com 823



REVIEWS Drug Discovery Today � Volume 16, Numbers 17/18 � September 2011

[(Figure_1)TD$FIG]

Bivariate Fit OCT logD By ChromlogD pH7.4 Bivariate Fit of ChromlogD pH7.4 By Calc_chromlogD

4

3

2

2
3
4

5
6

7

8
9

10
11

1

1

0

0

0 1 2 3 4 5 6

Quantile Density Contours.1.2.3.4.5.6.7 .8.9 Quantile Density Contours.1.2.3.4.5.6.7 .8.9

7 8 9 10

ChromlogD pH7.4

O
C

T
 lo

gD

C
hr

om
lo

gD
 p

H
7.

4

-1

-1

-1
-2 -2

-2 0 1 2 3 4 5 6 7 8 9 10

Calc_chromlogD
-1-2

Drug Discovery Today 

FIGURE 1

Bivariate fit between (a) measured OW log DpH7.4 and measured Chrom log DpH7.4 and (b) measured and calculated Chrom log DpH7.4 showing the line of unity.
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chromatographic parameter, albeit with the implicit two-unit shift

arising from the way in which Chrom log DpH7.4 is derived (the

diagonal differentiation is now represented by the line of Chrom

log DpH7.4 + #Ar = 7). This is in contrast to a categorised multiple

pie plot of binned SFI and molecular weight as variablesa; whereby

in a given SFI bin there is little or no variation in solubility

distribution with molecular weight changes. These data support

the notion that both hydrophobicity and aromaticity profoundly

influence solubility beyond their interdependence, but that mole-

cular weight correlates with solubility only owing to its relation-

ship with these two parameters.

Human serum albumin binding
The binding of molecules to plasma proteins, such as serum

albumin, is frequently a concern in drug discovery [25,26].

Although it might not be an attrition risk per se [27], high percen-

tage binding is a characteristic of lipophilic compounds and con-

tributes to reductions in efficacy and drug efficiency [28], owing to

a lower free fraction of available drug. High throughput %HSA

binding data [29] were available on 43 700 compounds in the data

set and these showed clear trends with higher levels of binding

observed [either by %bound or expressed as log KHSA, where

K = (%bound/%unbound)] as Chrom log DpH7.4 increased

(Fig. 2a). Interestingly, both Chrom log P and Chrom log DpH7.4

gave effective resolution of increasing bindinga; each produced

clearly enhanced resolution compared with that achieved using

measured or calculated OW log DpH7.4. Given the strong correla-

tion between the two, it was not surprising that mChrom log P and

clog P gave comparable outcomes. It might be that these observa-

tions are reflective of the multiple types of interaction involved

with HSA binding, whereby both intrinsic and effective hydro-

phobicity can have a role. In particular, log KHSA correlates with

Chrom log DpH7.4; however, for acids, the affinity is over and above

that expected owing to hydrophobicity alonea because of the

known presence of binding sites for acids on HSA. The summation

of Chrom log DpH7.4 plus #Ar, gave further enhanced resolution of
824 www.drugdiscoverytoday.com
these data, both in box plotsa and categorised bar graphs (Fig. 2b),

in a similar manner to solubility. The impact of #Ar in binding over

and above correlation with hydrophobicity was again obvious in a

categorised multiple pie plot (Fig. 3c), where a clear diagonal split

(again, as observed with solubility) was apparent, showing the

contribution of aromaticity to HSA binding above and beyond its

contribution to hydrophobicity. Remarkably, the line of Chrom

log DpH7.4 + Ar = 7 (PFI) again splits the regions of high and low

binding; (when PFI >7, log KHSA plots indicate that >95% binding

is likely).

Permeability
Investigations aiming to establish a better understanding of the

permeability of experimental drug molecules have received exten-

sive attention of late [30,31]. Permeation of biological membranes

has importance in various scenarios, such as absorption processes

(key to oral bioavailability, kidney re-absorption and brain penetra-

tion) and cell penetration to enable access to intracellular drug

targets. The reported relationships between hydrophobicity and

permeability were recently summarised as being, in different ana-

lyses, either linear, hyperbolic, sigmoidal, parabolic or bi-linear [32].

However, chromatographic measurements gave compelling indica-

tions that the relationship is bi-linear and dependent on effective

hydrophobicity. This dependency was previously described for a set

of drug molecules [31,33]; but the message has perhaps been lost as

further data have been generated over the years, probably distorted

by the trend towards increasingly more hydrophobic and aromatic

molecules. Given that the hydrophobicity range of the set of actual

drug molecules investigated [33] is likely to engender good solubi-

lity, then it is implicit [15] that the measured OW log D7.4 values

would probably be reliable. The observed trend was rationalised by

recognising that permeation is effectively controlled by both the

partition of the molecule into the lipid membrane and from

there into the aqueous environment on the other side. For hydro-

philic compounds, the partitioning into the hydrophobic layer is

the rate-limiting step and, conversely, for hydrophobic compounds,
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FIGURE 2

Distribution of HSA binding by (a) Chrom log DpH7.4 or (b) Chrom log DpH7.4 + #Ar bins and a categorised multiple pie plot (c) of binned #Ar versus binned Chrom

log DpH7.4 (with a diagonal line of Chrom log DpH7.4 + #Ar = 7). (c) Illustrates the diagonal split between values, supporting the notion that aromatic ring count has

an impact over and above its correlation with hydrophobicity.
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partitioning back out would be limiting; the combination of which

gives the observed bi-linear distribution.

Permeability (Papp) data were investigated for 46 300 com-

pounds measured in the AMP assay [34] and 1050 passing through

MDCK cells [35]. The latter data set comprised measurements in

the baso-apical direction under conditions with added GF120918

to inhibit Pgp efflux mechanisms [36], such that measurements

gave a best representation of passive diffusion. Plots of Papp in both

assays gave fairly clear bi-linear distributions (Fig. 3aa), irrespective

of solubility class,a suggesting that, as hydrophobicity increases to

a Chrom log DpH7.4 of 5, then permeation increases to a maximum

before tailing off again.

Molecular size is implicated as a factor in permeation rates [32],

and a clear decrease in permeation as size increases was apparent in

this data set,a although the change in distribution was not as

marked as the hydrophobicity relationship. In the MDCK assay,

the potential for penetration by the paracellular route [37] for

smaller, hydrophilic compounds was evident. Interestingly, there

was a bi-linear response for Papp versus #Ar, with two being the

optimum for good permeation. Remarkably, the summation of

Chrom log DpH7.4 + #Ar gives a statistically significant bi-linear
response,a shifting the maximum by two units to seven (possibly

the optimum Chrom log DpH7.4 noted above, plus two aromatic

rings). It is notable that the most favourable average permeation

rates were observed for compounds in the Chrom log DpH7.4 + #Ar

range of 6–8, which is the region where other parameters reviewed

herein show increasingly higher risks.

Cytochrome P450s
The propensity for a compound to interfere with cytochrome P450

metabolism is another widely used developability benchmark. Rates

of metabolism for known substrates of particular cytochrome P450

isoforms are monitored inthe presenceof the test substance; activity

in these assays is undesirable, indicative of potential drug–drug

interactions with other substrates or inhibitors of particular iso-

forms. Data were interrogatedacross the five P450 isoforms regularly

screened at GSK in bactosome assays [38], with 50 000–70 000 data

points available. In addition to hydrophobicity data [39], particular

focus was paid to size, charge and aromaticity, reflecting established

structure–activity relationships in such assays [40]. Table 1 sum-

marises where particular relevance of the descriptors showed

impact; this was generally consistent with published data [39,40].
www.drugdiscoverytoday.com 825
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FIGURE 3

Distribution by permeation classes in the AMP assay, binned by (a) Chrom log DpH7.4 and (b) Chrom log DpH7.4 + #Ar bins, showing the bi-linear relationships.
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For example, the 1A2 isoform, which showed relatively few active

compounds, only interacted with smaller, flatter, molecules (those

with a higher proportion of aromatic rings rather than #Ar per se).

The effect of increasing activity with increased size was apparent for

the 2D6, 2C9, 2C19 and 3A4 isoforms; evidence was also observed

for activity increased with particular charge states, as expected

[39,40]. However, the nature of the impact of measured Chrom

log DpH7.4 was of particular interest with 2D6, 2C9, 2C19 and 3A4;

clear bi-linear responses were observed, in both distribution graphs

(2C19 shown in Fig. 4a) and box plots.a These trends were not

immediately apparent with intrinsic hydrophobicity values or mea-

sured and predicted OW log DpH7.4, although, with hindsight,

tentative evidence for bi-linear relationships could be observed

for neutral compounds using clog P with 2C9, 2C19 and 3A4 data.a

Together, these observations support the influence of effective

hydrophobicity (log D) on P450 activity. This can be rationalised,

inpart, by the effectof the bactosome preparationsused in the assay,

whereby permeation into the bactosome, which itself is an artificial

membrane, is a prerequisite eventahead of any particular binding to

theP450enzyme itself. Therehavebeenreportsofapparentbi-linear

relationships based on small data sets [41], although findings in

broader reviews [39,40] have been more indicative of a linear

relationship between activity and hydrophobicity.
TABLE 1

Influence of descriptors on P450 binding activitya

P450 isoform Chrom log DpH7.4 Size (CMR)

1A2 � �++�
2D6 �+++� �++�
2C9 �+++� �++�
2C19 �+++� �++�
3A4 �+++� +++

a +, ++, +++ present increasing impact of the parameter; minus signs at either end (e.g. �+

826 www.drugdiscoverytoday.com
Aromatic ring count had a clear influence on the activity of 2C9,

2C19 and 3A4 [16] and, interestingly, there appears to be an effect

for the Chrom log DpH7.4 + #Ar addition; the bi-linear relationship

remains (Fig. 4b) with a two-unit shift in the maxima, as was

observed with permeation.

Intrinsic clearance
The Clint of molecules, measured by the rate of disappearance of a

given compound in a human liver microsome preparation,

although being a multi-functional process, is also known to be

hydrophobicity dependant [42] in addition to particular structural

liabilities. Analyses of these data (8700 records) also showed that

Chrom log DpH7.4 gave the best differentiation between bins; the

small subset with measured Chrom log P vales and clog P (on all)

showed no significant variation within the key window of clog P 3–

7.a Interestingly, there was no apparent effect on intrinsic clearance

as #Ar varied; although the composite Chrom log DpH7.4 + #Ar (PFI)

value accentuated a bi-linear shape between variables, perhaps

consistent with a key role for cytochrome P450-mediated metabo-

lism. Remarkably, the Chrom log DpH7.4 + #Ar value of seven again

indicated a statistically significant differentiation point where

marked increase in clearance occurred; when PFI >7 more than

50% have Clint of 5 ml/min/kg.a
#Ar Recognition factors

%Ar not #Ar Highly aromatic/flat structures, smaller/hydrophobic

+ Hydrophobic, optimum size, basic

+++ Hydrophobic, optimum size, aromatic, acidic

+++ Hydrophobic, optimum size aromatic, basic

+++ Hydrophobic, large, aromatic, basic

++�) are indicative of a bi-linear relationship.
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FIGURE 4

Distribution plot of cytochrome P450 2C9 pIC50 versus (a) Chrom log DpH7.4and (b) Chrom log DpH7.4 + #Ar bins, showing the bi-linear distribution.
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FIGURE 5

Distribution of hERG pIC50 values versus binnedmeasured Chrom log P + #Ar

(the iPFI) for basic compounds.
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hERG binding
Interactions with hERG, causing increases in the cardiac QT inter-

val, have provided a bench mark for identifying cardiovascular risk

in drug development [43]. It is known to be a particular issue for

positively charged lipophilic compounds [44], although not all

compounds are susceptible and homology models have been

successfully exploited in structure-based design to reduce activity

[45]. This analysis of 18 600 compounds clearly showed that

stronger trends were observed with Chrom log P and clog P,a

consistent with the intrinsic hydrophobicity of the molecules

being more important. Furthermore, as expected, positively

charged compounds (indicated as basic by the Chrom log D reduc-

tion between measurements at pH 7.4 and 11) showed increased

propensity for hERG inhibition.

An increase in #Ar is implicated as driver of hERG activity [16],

which was observed in this data set, most notably for positively

charged compounds. In this charged subset, in particular, the

summation of Chrom log P or clog P and #Ar (iPFI) produced a

significant upward trend of increased risk. Again, a significant

differentiation was observed for Chrom log P + #Ar >7 or clog -

P + #Ar >5 (Fig. 5); such that when iPFI >7 more than 50% have

hERG pIC50 >5.

Promiscuity
A GSK initiative, CCP, sought to determine the utility of large-scale

compound profiling in drug discovery. Over 2500 compounds,

including exemplars from GSKlead optimisation projects, marketed

drugs, legacy leads and failed development candidates, were

screened in >490 assays incorporating a diverse range of >380

protein targets and phenotypic end points. The promiscuity of a

compound was expressed as the frequency of it showing a pXC50 of

>5 (this enables a valid comparison with the study by Leeson and

Springthorpe [8], who took>30% inhibition at 10 mM as the defini-

tion of an ‘active’). Hydrophobicity is known to be a key driver

[8,46], but whether this can be attributed to intrinsic or effective
hydrophobicity was unclear,probablyowing to the shortcomings in

the OW model. Of this set, approximately 800 compounds had

measured Chromlog P and Chrom log DpH7.4 data,whichcorrelated

well with the predicted values (clog P and cChrom log DpH7.4,

respectively) and the frequency distribution clearly showed the

impact of hydrophobicity in increasing promiscuity [expressed as

log(# hits)]. Most notably, the trend appeared better differentiated

using Chrom log P rather than Chrom log DpH7.4
a; calculated OW

log P and measured Chrom log P values gave a similar outcome

across the whole data set.a This is consistent with intrinsic

hydrophobicity (i.e. log P) being the more important parameter

governing binding affinity (as observed with hERG). Leeson and

colleagues [8,9] and Peters et al. [46] reported particularly increased[(Figure_5)TD$FIG]
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promiscuity for lipophilic bases; however, although we observed a

raised overall promiscuity for basic compounds compared with

other charge classes in this data set, it appears that log P was the

key driver regardless of ionisation class. Within measured and

calculated intrinsic hydrophobicity bins, little charge-implicated

variation in hit rates was observed.a It was notable that the average

log P values of charged compounds were markedly higher than

those for neutral compounds, which in itself would be indicative

of increased promiscuity.

Aromatic ring count indicated a further clear risk signal in this

analysisa; a statistically significant increase in the number of hits

was observed for aromatic ring count increments between one and

four. The summation of #Ar together with clog P (iPFI) in this

scenario also indicated another application of the forecast index,

with clearly better differentiation than for log P alone (Fig. 6). A

categorised multiple pie plot again supports the notion of aromatic

ring count having an effect over and above its contribution to the

hydrophobicity of the molecule.a Fascinatingly, it appears that

values of Chrom log P + #Ar <7 (or <5 on the OW scale using

clog P) are commensurate with the indication of probable low

promiscuity; above these values, there is more than a 50% chance

of inhibiting more than five assays with pIC50 >5.

Aromatic rings: benzenoids versus heteroaromatics
Additional evaluation of this data set [47] indicated that hetero-

aromatic rings, in comparison with their benzenoid analogues,

generally reduce the propensity for compounds to show undesir-

able activity in the developability assays described herein. Yet, the

‘PFI’ summation of log DpH7.4 + #Ar appears to have wide applic-

ability; thus, by implication, the impact of the flat structures on,

for example, crystal packing, p-stacking or reduced degree of

freedom (entropic) contributions to the free energy of binding

processes must still hold. It was apparent that the beneficial effects

of heterocycles versus carbocyclic aromatics could be explained by

their generally lowered hydrophobicity. Indeed, inspection of

these data indicated that, within particular ‘PFI’ bins (i.e. narrow

ranges of log DpH7.4 + #Ar), the median solubility, % HSA binding

and other developability parameters showed little or no statisti-[(Figure_6)TD$FIG]
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FIGURE 6

Promiscuity data. Distribution of number of targets inhibited with a pIC50 > 5
by 2500 compounds, categorised by binned log P + #Ar values (the iPFI).
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cally significant variation regardless of the types of ring present in

the molecule. Of course, the PFI summation for most heteroaro-

matics would be correspondingly less than the analogous benze-

noid structures owing to their lesser hydrophobicity.

Conclusions
Chromatographic hydrophobicity determination has been shown

to be linear, non-solubility dependent, predictable and, above all,

relevant. Although this review might not signal the end of the

story for the measurement and prediction of hydrophobicity with

reliability and precision, or even be the beginning of the end, it

might hasten the end for the more time-consuming and, as

demonstrated [15], less reliable OW system as the standard model

in contemporary drug discovery, especially if more hydrophobic

(implicitly less soluble) molecules need to be measured.

Important new insights into the hydrophobicity-dependent

behaviour of molecules have been established, confirming where

effective or intrinsic hydrophobicity is the key parameter and

bringing a sharper focus to relationships that were previously less

well resolved. The enduring quality of the log P predictions

derived from the MASTERFILE database of fragment values [48]

was a notable feature within these data, these calculated values

being more realistic appraisals of the true intrinsic hydrophobicity

than are measured OW values. However, the key parameter was

often shown to be effective hydrophobicity; whereby measured or

predicted Chrom log DpH7.4 showed much better differentiation

than did measured or calculated OW log DpH7.4 values. A wider

relevance for simplistic PFIs has established the impact of aroma-

ticity, over and above its contribution to hydrophobicity, as a risk

in solubility and promiscuity in its various forms relevant to

attrition. That the ‘PFI’ guide of OW log P (or log DpH7.4) + #Ar

should be less than 5 is no coincidence, given the average clog P of

3 and #Ar of 1.8 in oral drugs [8,14]; the two-unit shift to Chrom

log DpH7.4 + #Ar <7 is also entirely consistent with this. Whereas

the structure–property relationships in this analysis are clearly

more complex than being just due to the hydrophobicity and

aromaticity of that molecule, it is clear that chromatographic

measurements give a better refined and more relevant hydropho-

bicity assessment; OW values, polar surface area or molecular

weight simply do not differentiate as effectively. Although the

analyses by binned Chrom log P/log DpH7.4 demonstrate simplis-

tic, yet sound, rules of thumb, further refined and more complex

predictive models will surely benefit from their inclusion as the

hydrophobicity parameters. This will not only be due to enhanced

precision, but also through the establishment of linear or bi-linear

dependencies of the property and when intrinsic or effective

hydrophobicity is the more relevant parameter. The binning by

hydrophobicity or PFI/iPFI classes expresses the chances of a

property-related risk in that narrow range, which is more indica-

tive and informative than defining a particular cut off such as 3/75

[13] or 4/400 [14]. Nevertheless, risks for the developability para-

meters investigated are clearly exacerbated above a PFI/iPFI of 7 on

the chromatographic hydrophobicity scale; indeed a value of <5

would appear desirable (Table 2), although there is a potential

need for concessions to enable more effective permeation.

There is agrowingdiscussiononimplicationsof crosscorrelations

in molecular properties and physical properties [3,49] and how they

relate to the concepts of bulk and cohesiveness proposed by Cramer
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TABLE 2

Percentages of compounds achieving defined target values in the various developability assays categorised by PFI or iPFI binsa

PFI = mChrom log DpH7.4 + #Ar 

Assay / target value >10 9-10 8-9 7- 8 6-7 5-6 4-5 3-4 <3 

Solubility >200 μM 89 83 72 58 33 13 5 3 2 

%HSA <95% 88 80 74 64 50 30 17 8 4 

2C9 pIC50 <5 

2C19 pIC50 <5 

3A4 pIC50 <5 

97 90 83 68 48 32 23 22 38 

97 95 91 82 67 52 42 42 56 

92 83 80 75 67 60 58 61 66 

Clint <3 ml/min/kg  

79 76 68 61 54 42 41 39 52 

Papp >200 nm/s 20 30 46 65 74 77 65 50 33 
 iPFI = mChrom log P + #Ar 

hERG pIC50 <5  

(+1 charge) 86 93 88 70 54 36 29 21 11 

Promiscuity <5 hits 
with pIC50 >5 85 78 74 65 49 30 20 13 7 

a Colouring refers to the % chance of achieving benchmark value in that PFI bin: green, �67%; yellow, 34–67%; and red, <33%.
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[50]; this analysis suggests that hydrophobicity should be the pre-

eminent parameter in medicinal chemistry, rather than size, weight

or polar surface area. Additionally, a shape characteristic with

orthogonality to hydrophobicity, which is demonstrated to be well

represented by #Ar in this analysis, is a second key molecular

descriptor. Together, as their sum (PFI), these form a sound and

relevant foundation for property-based design that should facilitate

better predictions and, thus, decision making in future [51]. The

impact of low PFI figures reflects the trends noted by Leeson et al.

[49], whereby the proposed shape parameter of Ar-sp3 is consider-

ably lower in given hydrophobicity bins for oral drugs than for

compounds in pharmaceutical patents. Of course, a drug can and

will lie outside of the chemical space defined by these and other

guidelines [52]; but the probability of success, defined by minimis-

ing the chance of undesirable effects, is much greater within them.

Lipinski’s ground-breaking Rule of 5 [53], which was proposed as a

guide to solubility and permeability, has been the established

benchmark for drug discovery over the past decade; recent reviews

[9,10,14] suggest much stricter property values should be adhered

too. Perhaps optimal PFI values, underpinned by improved hydro-

phobicity determination, represent the aspiration for quality, non-

obese and shapely candidates over the next decade, which should
contribute to a reduction in attrition; by paying attention to PFI,

these data suggest that many issues will take care of themselves.
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21 Valkó, K. (2004) Application of high-performance liquid chromatography based

measurements of lipophilicity to model biological distribution. J. Chromatogr., A

1037, 299–310

22 Liddle, J. et al. (2008) The discovery of GSK221149A: a potent and selective oxytocin

antagonist. Bioorg. Med. Chem. Lett. 18, 90–94

23 Borthwick, A.D. et al. (2006) 2,5-Diketopiperazines as potent, selective, and orally

bioavailable oxytocin antagonists. 3. Synthesis, pharmacokinetics, and in vivo

potency. J. Med. Chem. 49, 4159–4170

24 Young, R.J. et al. (2008) Structure and property based design of factor Xa inhibitors:

pyrrolidin-2-ones with biaryl P4 motifs. Bioorg. Med. Chem. Lett. 18, 23–27

comments 28, 33

25 Howard, M.L. et al. (2010) Plasma protein binding in drug discovery and

development. Comb. Chem. High Throughput Screen. 13, 170–187

26 Trainor, G.L. (2007) The importance of plasma protein binding in drug discovery.

Expert Opin. Drug Discov. 2, 51–64

27 Smith, D.A. et al. (2010) The effect of plasma protein binding on in vivo efficacy:

misconceptions in drug discovery. Nat. Rev. Drug Discov. 9, 929–939

28 Braggio, S. et al. (2010) Drug efficiency: a new concept to guide lead optimization

programs towards the selection of better clinical candidates. Expert. Opin. Drug

Discov. 5, 609–618
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