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Identifying compound efficacy targets
in phenotypic drug discovery
Markus Schirle and Jeremy L. Jenkins

Developmental & Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA

The identification of the efficacy target(s) for hits from phenotypic compound screens remains a key step

to progress compounds into drug development. In addition to efficacy targets, the characterization of

epistatic proteins influencing compound activity often facilitates the elucidation of the underlying

mechanism of action; and, further, early determination of off-targets that cause potentially unwanted

secondary phenotypes helps in assessing potential liabilities. This short review discusses the most

important technologies currently available for characterizing the direct and indirect target space of

bioactive compounds following phenotypic screening. We present a comprehensive strategy employing

complementary approaches to balance individual technology strengths and weaknesses.
Introduction
Recently, there has been a resurgence of phenotypic screening in

drug discovery as an alternative to the target-centric approaches

that have dominated since the molecular biology revolution in the

1980s [1]. Conceptual advantages of phenotypic screens include a

pre-selection for compounds with proven cellular activity, the

potential to identify novel druggable proteins and mechanisms

in a given disease context and the ability to identify compounds

that elicit their phenotype via activity on multiple targets, see [2]

for an in-depth discussion. Traditionally, however, the follow-up

work of target identification and elucidating the mechanism of

action (MoA) of hits from phenotypic screens has historically been

slow and at times fruitless. Knowledge of the efficacy target, the

protein through which the drug elicits the phenotype of interest

via direct binding and modulation, is not necessarily an absolute

requirement during initial development stages. However, the

definition of the on- and off-target space remains a crucial step

toward full development for a drug candidate; it facilitates opti-

mization of potency within a lead scaffold and the identification

of alternative chemical matter. Moreover, it allows assessment of

safety as well as prediction and monitoring of efficacy when

moving from a simplified cellular model to in vivo models and
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ultimately the patient. In recent years, the number of available

approaches for target deconvolution has increased significantly.

These approaches are based on fundamentally different principles

and provide complementary information. Thus, a multipronged

approach can significantly speed up and increase the success rate

of target identification efforts by balancing strengths and weak-

nesses of the various approaches and enabling prioritization of

target hypotheses by intersecting individual hit lists.

The various strategies can be grouped based on the exact ques-

tion they are addressing (Fig. 1). They provide glimpses of different

aspects of the often complex physical and functional interactions

of a compound when exerting its biological effects in vivo. Impor-

tantly, these include not only the efficacy target but also other

epistatic proteins relevant for compound effect, off-targets respon-

sible for potentially unwanted secondary phenotypes and proteins

involved in transport and modification of the compound (Fig. 2

provides definitions).

Affinity-based approaches focus on the identification of cellular

interactors of a compound, which include direct efficacy and off-

targets in the context of the phenotype of interest. Genetic and

genomic functional approaches focus on identification of genes

relevant for the compound effect on the phenotype of interest.

These genes will include the efficacy target as well as other com-

ponents involved in the specific cellular mechanism modulated

by the compound. In contrast to the individual protein or gene
1359-6446/� 2015 Elsevier Ltd. All rights reserved.
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Knowledge-based approaches Cellular profiling approaches

- Small-molecule affinity proteomics
- Proteomic target stability profiling
- SEC-TID
- Protein arrays
- Yeast-3-hybrid
- Ribosome display

- HIP HOP
- MutaSeq
- Variomics
- Compound-sensitized gene screens

(si/shRNA, CRISPR/Cas9, cDNA)
- Haploid gene trap screens

- Chemical similarity to references or
ensembles

- Bioactivity (HTS) fingerprint  similarity
- Machine learning / classification
- MoA-specific compound collections 
- Computational high-throughput docking
- Causal network modeling

- Promoter signature profiling
- Cell line cytotoxicity profiling
- Gene expression signature analysis 
- Metabolomics
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FIGURE 1

Overview of available technologies for target deconvolution and elucidation of compound mechanism of action, grouped by underlying principles.

DCK

RNR (RRM1, RRM2)

DNA incorporation,
termination of DNA strand

synthesis
DNA damage response:
ATR, CHEK1, WEE1,...

PLK1

Deoxyribonucleotide
depletion

Gem

GemMP

GemDP

GemTP

NMPK (?)

NDPK (?)

hCNT (SLC28A1)
hENT (SLC29A1)

DNA
damage

Cell
death

Assay
readout

G2/M arrestDNA incorporation

)

)

Drug Discovery Today 

FIGURE 2

The drug effect pathway, illustrated for gemcitabine (Gem), consists of the efficacy target(s) as well as additional classes of epistatic proteins that influence

compound phenotype. Efficacy target - direct target of compound, physical interactor through which the drug elicits the phenotype of interest; here [e.g.
ribonucleotide reductase (RNR) DNA] incorporation leads to termination of DNA strand synthesis. Indirect compound effector - not a direct target of the

compound but influences drug-dependent effect on phenotype (e.g. complex members modulating target activity, components of cellular mechanisms

counteracting compound effect; here, components of DNA damage response). Binding (off )-target - binds drug directly or indirectly, but binding is irrelevant to
phenotype of interest; could still mediate different phenotype. Compound-specific effector - influences compound activity but not part of phenotype pathway

[e.g. transporters (in/out), bioactivating/metabolizing enzymes; here, deoxycytidine kinase (dKC) and other kinases involved in Gem activation via

phosphorylation, nucleoside transporters (hCNT, hENT) required for Gem uptake]. Compound-independent assay effector?modulates assay phenotype when

altered, with or without compound treatment; here, PLK1 knockdown alone causes cell toxicity.
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resolution provided by these approaches, cellular profiling

approaches interrogate the overall cellular response to compound

treatment at the level of signaling, gene expression, viability or

metabolism. Finally, knowledge-based approaches rely on empiri-

cal and computational approaches and a reference collection of

compounds with known targets and MoA to make inferences.

Ultimately, all approaches generate data linking compounds to

targets, edging forward steadily toward the chemical biology

aspiration of finding a compound modulator for every amenable

target.

Affinity-based approaches
Affinity-based approaches for target deconvolution aspire to iden-

tify the full protein-binding spectrum of a compound; this is

followed by functional classification of these interactors as efficacy

targets, off-targets or compound-specific effectors. Available strat-

egies can be grouped into two broad categories: chemoproteomic

approaches interrogate proteins directly in cell lysates or live cells;

in vitro approaches rely on purified protein or protein domains.

The former are generally closer to the naturally occurring proteo-

form with respect to sequence, post-translational modifications

and presence of interacting proteins that can all influence com-

pound binding. However, despite ever-increasing sensitivity of

detection methods, the differences in cellular abundance of puta-

tive interactors that are being interrogated in parallel still pose

a challenge (protein levels span ten orders of magnitude). In

addition, most of these methods do not differentiate between

direct and indirect binding. A popular version of chemoproteo-

mics combines small-molecule affinity chromatography with

mass-spectrometry (MS)-based proteomics [3]. For unbiased target

deconvolution, the compound of interest is immobilized on solid

support via a functionalized linker introduced at a permissive site

so that the resulting affinity probe retains cellular activity. The

identification and synthesis of such validated tool compounds can

be challenging, in particular for complex natural products. Here,

photo-crosslinker matrices can be a viable alternative. Irradiation

of the matrix together with the parent compound leads to site-

nonselective carbene insertion or addition into the compound.

This results in a random compound display on beads with the

assumption that at least one of the multiple orientations is com-

patible with target binding [4]. In all cases, the immobilized

compound is then used for enrichment of putative interactors

by incubation with a disease-relevant cell lysate. Often, additional

steps are taken to further discriminate high-affinity interactors

that are more likely to be phenotypically relevant from low-

affinity but high-abundance interactors. These include pre-

incubation with free compound [5,6] or comparing the enrich-

ment profiles of active and inactive affinity probes from the same

scaffold [7]. In these cases, stable isotope-based or label-free

approaches to quantitative MS provide the readout for relative

quantitation [8,9]. Functional complexes are often preserved

during cell lysis and hits will include compound-binding proteins

as well as their accessory proteins. This makes further deconvolu-

tion by validation of direct binding in vitro or by functional

approaches necessary. By contrast, this feature has been success-

fully exploited to demonstrate differential binding of classes of

histone deacetylase (HDAC) inhibitors to different and even novel

chromatin-remodeling complexes [10]. Noncovalent, lysate-based
84 www.drugdiscoverytoday.com
approaches have been successfully applied to the identification of

a wide range of targets, including soluble enzymes such as protein

kinases [5], the lipid kinase PIKFyve [11] and many others. How-

ever, a number of therapeutically relevant target families, in

particular integral membrane proteins such as ion channels and

G-protein-coupled receptors, are notoriously incompatible owing

to loss of their binding-competent conformation during the

experimental workflow [12,13].

By contrast, covalent approaches allow ‘freezing’ of the interac-

tion between the affinity probe and the target. This also enables

application to live cells or crude membrane fractions. For de novo

target identification, exemplified by the determination of Sec61a

as the target of a cyclodepsipeptide inhibitor of translocation [14],

the compound of interest is conjugated to a reactive group as well

as an affinity handle (e.g. biotin). Reactive groups can be based on

a number of chemical scaffolds including protein-reactive natural

products [15], general electrophilic groups [16,17] and photoreac-

tive moieties as used in the example above. To improve cell

permeability of the affinity probe, the affinity handle is often

introduced after covalent bond formation as well as cell lysis,

using, for example, click chemistry [18]. Covalent approaches also

enable denaturing experimental conditions because proteins do

not have to be preserved in their binding-competent conforma-

tion during the workflow. As a result, hit lists are biased toward

direct interactors reflecting a proximity-driven labeling event. This

can be exploited for further target deconvolution in cases where

noncovalent approaches identify macromolecular complexes con-

sisting of direct and indirect compound interactors. This concept

is exemplified by comparing the data reported for probes based on

the class I/IIb HDAC active-site inhibitor suberanilohydroxamic

acid (SAHA). As mentioned, a noncovalent SAHA probe yields

several, functionally distinct HDAC-containing complexes as spe-

cific hits [10]. By contrast, the covalent SAHA–BPyne probe yields

only core HDACs and a very small number of additional complex

members as specific binders, reflecting HDAC-binding sites located

close to the active site for the latter [19]. It should be noted that

background as a result of low-affinity interactions and low-effi-

ciency labeling (e.g. for photoreactive groups) remains an issue for

covalent approaches. Therefore, additional experimental steps

such as competition with free compound or a probe titration

are typically required to assess relative affinity and proteome-wide

specificity of a probe–target interaction.

In addition to affinity-chromatography-based approaches, strat-

egies have been developed that identify interactions by monitor-

ing changes in target stability upon compound binding.

Importantly, these approaches do not require time- and re-

source-intensive modification of the original compound. The

various reported strategies differ in the specific assay format used

as readout for protein stability in combination with (quantitative)

proteomics [20–23]. The cellular thermal shift assay (CETSA) is

analytically straightforward – target stabilization is determined by

quantifying the increase of non-heat-denatured protein in solu-

tion upon compound treatment. However, the degree of binding-

induced stabilization is specific to each individual protein and not

every binding event leads to detectable stabilization of the full

length protein. This complicates a proteome-wide rank ordering of

putative targets. Together with the absence of a functional enrich-

ment step potentially limiting dynamic range, this approach
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seems currently best-suited for focused studies on engagement of

soluble targets in live cells.

A number of strategies employ a functional readout in living

cells for detection of compound–protein interactions. The yeast-3-

hybrid approach extends the classical yeast-2-hybrid system for

detection of protein–protein interactions by split transcription

factor complementation to protein–compound interactions [24].

In a typical setup as used for the recent identification of phospho-

diesterase PDE6D as the target of anecortave acetate [25], the

compound of interest is conjugated to the bait ligand methotrex-

ate. Interaction with components of a cDNA library leads to a

dihydrofolate-reductase-mediated transcriptional activation of a

reporter gene. Although the concept has also been extended to

mammalian cells [26], applications to compound target ID are still

relatively scarce. This might reflect limitations as a result of

incomplete coverage of the functional proteome by the mamma-

lian cDNA libraries and the restriction to interactions that can

occur in the nucleus.

In addition, a number of biochemical and biophysical

approaches are available that use arrayed collections of purified

proteins. These are typically based on recombinant expression

systems and massive protein production as a first step. Important-

ly, the normalized protein content can overcome abundance

issues inherent to chemoproteomics approaches. Furthermore,

these in vitro approaches enable a detailed analysis of direct pro-

tein–compound interactions, making them attractive for valida-

tion of specific target hypotheses generated by other approaches.

Beyond such more-focused applications, several platforms have

been reported that allow interrogation of a large part of the

(human) proteome; protein arrays have been used to assess bind-

ing to proteins immobilized on surfaces but require labeled com-

pound and are prone to background issues [27]. By contrast, size-

exclusion chromatography for target identification (SEC-TID)

assesses binding of an underivatized compound to thousands of

individual soluble proteins and domains in a well-by-well SEC

format. This allowed the identification of novel interactors of

vadimezan and mefruside [28]. Finally, ribosome display-based

approaches have been explored in proof-of-concept studies for

compound target ID [29]. Notably, as for most affinity-based

approaches, these in vitro strategies tend to work best for non-

transmembrane targets for which binding competence is less

dependent on a functional cellular environment.

Functional genomics approaches
A second group of approaches focuses on genetics to identify

cellular components that are functionally relevant for the MoA

of a compound. Genomic approaches offer powerful opportunities

to identify compound efficacy targets in an unbiased manner;

however, they are also particularly susceptible to identifying pro-

teins that indirectly influence drug effect (Fig. 2) and can be ‘blind’

to targets with redundant, compensatory paralogs.

Historically, model organisms have provided useful target iden-

tification systems owing to the ability to create gene-deletion

libraries that are heterozygous or homozygous (if nonessential).

For example, genetically manipulated diploid Saccharomyces cere-

visiae libraries [30] can be screened in the presence of drug in

haploinsufficiency profiling (HIP) or homozygous deletion profil-

ing (HOP) to find genetic deletions that sensitize or suppress drug
cytotoxicity [31,32]. Similarly, Escherichia coli models that enable

systematic drug target titration have helped shed light on drug

MoA as well as modalities [33].

Owing to the increasing availability of affordable next-generation

sequencing (NGS) technologies, the genome-wide identification

of spontaneous or chemically induced resistance-conferring muta-

tions (MutaSeq, DrugTargetSeqR) has gained momentum [34].

MutaSeq is analogous to the clinical scenario of drug resistance

through acquired mutations in efficacy targets or compound-

specific effectors. Typically, multiple clones can help pinpoint

efficacy targets, but also indirect resistance mechanisms emerge

(e.g. xenobiotic pumps) [34], necessitating follow-up experiments

[35]. Unfortunately, MutaSeq is restricted to compounds with cyto-

toxic mechanisms. Further, compounds with polypharmacology

create a higher hurdle for selecting resistant clones.

An alternative resistance-based approach uses drug treatment of

near-haploid human KBM7 cells along with random retroviral

introduction of a tagged reporter cassette. Drug-resistant colonies

are grown, and the gene containing the inserted reporter cassette

is sequenced to reveal targets that suppress drug MoA when

disrupted [36]. Like yeast homozygous mutant profiling, haploid

genetic screens find efficacy targets only for activating or agonist

drug modalities. By contrast, for drugs with inhibitory or antago-

nist mechanisms, only indirect effectors or compound-specific

effectors are revealed.

In addition to genetic knockouts, specific residues responsible

for drug binding can be determined systematically by creating

protein variants across the genome, an approach dubbed ‘vario-

mics’ [37]. Functional variomics uses systematic construction of

genetic libraries based on error-prone PCR and screening of nu-

merous genetic variants to identify specific point mutations that

influence compound efficacy. Although still an emerging ap-

proach in human cell lines, variomics holds promise of early

prediction of drug-resistance mutations or better understanding

target function [38].

Alternatively, similar genetic suppression or potentiation of

compound mechanism has been achieved in human cells by

combining compound treatment with cDNA overexpression

[39] as well as with RNAi, reviewed in [40], in genome-wide

screens. siRNA and pooled shRNA screens are amenable to unbi-

ased, genome-wide compound-sensitization experiments. The

misconception that RNAi completely knocksdown mRNA has

led to confusion as to whether compound–RNAi screens can

identify direct drug targets (as opposed to only indirect effectors).

In practice, knockdown is variable, and direct and indirect targets

are identified because of rampant partial knockdown by siRNA

libraries, which creates a synthetic gene insufficiency. As an

example, successful target ID was achieved for STF118804, a

compound that reduced viability of most B-ALL cell lines, using

a genome-wide pooled shRNA screen, where the direct target,

nicotinamide phosphoribosyltransferase (NAMPT), was the most

statistically significant gene conferring drug sensitivity [41]. In a

second example, toxicity of gemicitabine was potentiated by

siRNA knockdown of the direct target, Ribonucleotide Reductase

(RRM1), as well as by inhibition of Checkpoint Kinase 1 (CHEK1)

caused by prevention of DNA damage repair, reinforcing the

concept of indirect compound effectors (Fig. 2) [42,43]. Therefore,

the ‘drug effect pathway’ can be well characterized by the total
www.drugdiscoverytoday.com 85
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complement of hits from loss-of-function screens, but the chal-

lenge remains to pick the efficacy target among the sensitizing

genes. Further, the directionality of the drug effect on its efficacy

target – antagonist, agonist or other – presents an additional

challenge for interpretation. For agonists, efficacy target knock-

down creates a suppressive effect; whereas for antagonists, efficacy

target knockdown potentiates compound mechanism. It is ideal

therefore to run multiple compound doses in sensitization screens

and analyze the data for drug suppression and potentiation.

With the advent of CRISPR–Cas9 genome-editing technologies,

additional approaches are emerging to elucidate compound MoA.

Transcriptional repression or activation by CRISPRi and CRISPRa,

respectively, in combination with ricin toxin or a diphtheria–

cholera chimera, revealed pathway members potentiating or sup-

pressing toxin entry and MoA. Moreover, transcription levels were

shown to be programmable by doxycycline-inducible Cas9 [41].

Thus, CRISPRi and CRISPRa are a target ID platform analogous to

RNAi/cDNA screening, but with greater precision control. Genome

editing promises to be a premiere target ID platform in addition to

compound target validation [44].

Cellular profiling approaches
Profiling approaches to target ID and MoA elucidation are based

on – in the broadest sense – functional readouts of compound

action on targets, cells or organisms. In the simplest example, a

compound can be tested for direct activity against a panel of

targets (e.g. commercially available kinase or receptor panels).

By contrast, cellular profiling approaches provide information

about the compound MoA by measuring various cellular

responses. They can also incorporate correlation with underlying

cellular genetic features. In most cases, these approaches are based

on correlation of generated profiles to a reference set of com-

pounds with known MoA, using for example pattern matching

algorithms. As a result, these approaches are most powerful for

binning hits from phenotypic screens into known versus poten-

tially novel MoA. This enables prioritization of the latter for

higher resolution affinity- or function-based approaches. The

earliest efforts used gene expression profiles generated in yeast

[45] or human cell lines: Connectivity Map [46]. Higher through-

put has been achieved by using a signature of �100 genes maxi-

mally responsive to compound treatment [47]. Promoter

signature profiling (PSP) uses a collection of >40 high-throughput

luciferase-based reporter gene assays [48]. Taken together, the

resulting profile provides a snapshot of the cellular signaling

response to compound treatment and has proven in our hands

to be valuable for large-scale correlation to profiles of compounds

with known MoA.

In an analogous manner, the quantitative analysis of the cellu-

lar metabolome has been successfully applied for target ID of

compounds that directly or indirectly affect metabolite levels.

An example is the identification of the glucose transporter GLUT1

as the target of glucopiericidin A [49]. Finally, a large collection of

cell lines that has been characterized in-depth at the genetic level

and beyond – the Cancer Cell Line Encyclopedia (CCLE) [50] – has

proven to be a powerful tool for target ID and MoA elucidation of

cytotoxic compounds. Here, selective toxicity for a subset of cell

lines allows the identification of genetic features that correlate

with sensitivity or resistance [50].
86 www.drugdiscoverytoday.com
Knowledge-based approaches
In general, computational methods for target ID are the fastest

shown in Fig. 1, making them the first approaches implemented

for deconvoluting phenotypic screening hits. However, like all

approaches relying on correlation to reference compounds, they

are limited in their breadth of targets that can be predicted, and

ultimately depend on experimental validation of efficacy targets.

Knowledge-based approaches, at their core, rely on exploitation of

integrated compound–target associations gleaned from bioactivity

data. Bioactivity data can be assembled from high-throughput

screening, dose–response validation or low-throughput experi-

ments found in public, commercial and proprietary sources

[51]. The fact that bioactivity data are vast and span many data

sources presents a considerable infrastructure burden [52], starting

with the problem of target name and chemical structure standard-

ization. Despite these challenges, advances have been made with

regard to data in the public domain as a result of efforts like

ChEMBL [53] and the open PHACTS project [54]. However, there

remains not yet one authoritative source for compound–target

associations, which creates an obstacle for most organizations

pursuing knowledge-based approaches. Therefore, successful exe-

cution of knowledge-based approaches depends on core expertise

in cheminformatics and chemical biology to integrate large-scale

pharmacology data. In terms of genomic coverage by chemical

matter, we estimate that �4000 human targets have associated

chemical modulators from literature, patents or databases avail-

able to us, corresponding to roughly 15–20% coverage of the

human genome [55]. Even so, direct annotation of hit lists from

phenotypic screening, combined with gene set enrichment on

annotated targets, is a fast, first-pass approach to guess targets

influencing assay biology [55,56].

In lieu of direct target annotations for compounds, a number of

knowledge-based approaches exist to predict targets based on the

similarity principle, or ‘what reference bioactive compound does

my compound look like?’ A further review is presented in [57].

Ligand-based target prediction requires: (i) a compound descrip-

tor; and (ii) a similarity metric or machine learning technique.

Regarding descriptors, many flavors of 2D and 3D chemical

descriptors have been evaluated. In recent years, extended con-

nectivity fingerprints have been widely successful. In contrast to

chemical descriptors, fingerprints that incorporate compound

behavior across aggregated historical assays into a biological fin-

gerprint have proven equally powerful (e.g. HTS fingerprints)

[58,59]. For similarity determination, reference database mole-

cules can be searched individually by classical metrics like

Tanimoto or Pearson correlation, or as ligand sets, such as the

similarity ensemble approach (SEA) [60]. Many machine learning

approaches have been explored for training target class models to

predict targets of compounds, ranging from Naı̈ve Bayes [61] to

Random Forest to Deep Learning [62]. Indeed, machine learning

approaches to target prediction have had recent successes, such as

application to open access compounds and neglected diseases [63].

Further, many groups are attempting to use network science

by projecting compound–target bioactivities for disparate data

sources onto graph nodes and edges so that compound–target

associations can be ranked [64].

Again, genome coverage is limited for the above computational

approaches and, for compounds having unprecedented targets,
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only methods that can extrapolate to undrugged targets will have a

chance of success. For example, machine learning approaches that

focus on protein domains rather than individual targets can

predict novel compound–target pairs [65]. Even more promising,

the field of proteochemometrics is attempting to learn on matrices

of protein features and chemical features with quantitative activi-

ties to allow compound–target prediction for new compounds

and/or targets [66]. An alternative approach is to dock compounds

to the protein ‘pocketome’ from X-ray crystal structures to score

potential protein interactors [67], a tactic not limited to the

liganded genome but rather to the corpus of proteins with crystal

structures and ligandable pockets. One final knowledge-based

approach to target ID that is not limited to similarity to reference

compounds is to apply causal modeling on network graphs seeded

with nodes from compound profiling data. For example, differen-

tially expressed genes resulting from compound treatment can be

causally linked to the direct compound target ‘upstream’ in an

interaction network (gene–protein and protein–protein edges);

proteins in the interactome can thus be predicted to be the

compound target if they display the proper connectivity and

network directionality commensurate with the magnitude of gene

transcriptional effects [68].

Concluding remarks and future outlook
It is for a good reason that a multitude of approaches to target

deconvolution exist and are actively being developed. No one

method can exquisitely reveal all types of drug efficacy targets

regarding the strengths and weaknesses highlighted in Fig. 3.
Thorough understanding of these caveats is key to strategic

technology deployment in target ID campaigns. We propose here

that the distinction between the ‘drug–effect pathway’ and the

pathway driving a phenotype-of-interest (Fig. 2) is useful to guide

experiment interpretation. Each technology is susceptible to
www.drugdiscoverytoday.com 87
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highlighting epistatic proteins that are informative for drug MoA,

yet can complicate identification of the efficacy target of the

molecule.

In the past few years, target ID technologies have shifted away

from approaches that rely solely on correlation to reference com-

pounds in favor of unbiased, genome-wide approaches, enabling

more opportunities to discover novel drug targets. New genera-

tions of proteomics-based strategies are increasingly compatible

with experiments in living cells by employing covalent workflows

or target stability-based readouts. Functional genomics, by con-

trast, has shifted away from synthetic lethal approaches in model

organisms toward genome-wide loss-of-function or gain-of-func-

tion screens in human cells by genome editing.

The described suite of technologies, together with traditional

bioassay data, generates a continuously expanding number of

compound–target relationships, which can be integrated into a

core knowledge-base feeding back into a phenotypic drug discov-

ery cycle (Fig. 4). This chemical biology knowledge then enables

annotations and target prediction for phenotypic hit lists. Further,

the integrated pharmacology data yield a virtual framework to

construct small compound sets (boxes) with well-annotated mech-

anisms. For organizations with large compound libraries, dynamic
88 www.drugdiscoverytoday.com
cherry-picking capacity and a database of high-confidence com-

pound–target annotations, we propose that such a ‘MoA box’ can

be a frontline approach to target discovery by phenotypic screen-

ing. Ironically, by integrating chemical genetic data, the pheno-

typic drug discovery pendulum swings back toward ‘reverse

chemical genetics’, enabling systematic chemical biology, and ob-

viating the need for the target ID with the goal of opportunistically

linking known targets to new biology through compound-induced

phenotypes. Nevertheless, many important compounds in phar-

macology defy a simple compound–target modulation relationship

– from paclitaxel to thalidomide to metformin. Therefore, pheno-

typic screening is expected to continue to have a crucial role in drug

discovery – complementary but orthogonal to genetic screening and

harnessing the true power of chemical biology.
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