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Antibody–cytokine fusion proteins, often referred to as immunocytokines, represent a novel class of

biopharmaceutical agents that combine the disease-homing activity of certain antibodies with the

immunomodulatory properties of cytokine payloads. Originally, immunocytokines were mainly

developed for cancer therapy applications. More recently, however, the use of anti-inflammatory

cytokines for the treatment of chronic inflammatory conditions and to treat autoimmune diseases has

been considered. This review analyzes basic principles in the design of immunocytokines and describes

the most advanced products in preclinical and clinical development.
Introduction
Chronic inflammation is generally associated with a persistent

dysregulation of immune cells, causing considerable damage to

tissues and organs. Chronic inflammatory disorders cover a wide

range of diseases, the incidence of which is continuously increas-

ing. Some of these disorders have been associated with increased

risk of other health threatening maladies, for example, cardiovas-

cular events or certain cancer types [1,2]. Many inflammatory

conditions (e.g. rheumatoid arthritis) are not curable and there

is an urgent need for more-efficacious therapeutic agents.

Immunocytokines: a strategy to improve potency and
selectivity of cytokine-based products
Cytokines are a group of small immunomodulatory proteins that

regulate the activity of immune cells in health and disease. These

proteins can be released not only by leukocytes but also by other

cell types, including fibroblasts, endothelial cells and other stro-

mal cells. In most cases, cytokines act locally in an autocrine or

paracrine fashion, binding with high affinity to cognate receptors

and regulating immune cell activity. In pathological conditions,

such as cancer or septic shock, cytokines can also act on distant

organs, influencing a variety of biological processes such as vascu-

lar permeability, mobilization of metabolites, control of body

temperature and leukocyte development, to name just a few [3].
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Cytokines are crucially important in a variety of pathological

conditions and the antibody-based blockade of proinflammatory

cytokines [e.g. tumor necrosis factor (TNF), interleukin (IL1)b, IL12,

IL17, IL23] or their cognate receptors (e.g. IL6R) has led to the

development of successful biopharmaceutical products (Table 1).

For example, TNF blockers represent the best-selling class of all

pharmaceutical products, as a consequence of the substantial bene-

fit offered to patients with chronic inflammatory conditions such as

rheumatoid arthritis, psoriatic arthritis, psoriasis, ankylosing spon-

dylitis, Crohn’s disease and ulcerative colitis [4].

In addition to serving as targets for the development of blocking

agents, the potent agonistic activity of certain cytokines has

prompted their industrial and clinical development as recombi-

nant biopharmaceuticals (Table 1). IL2 has been approved for the

treatment of advanced melanoma and renal cell carcinoma and

received orphan drug designation for the treatment of primary

immunodeficiency disease. Interferon (IFN)a has received market-

ing authorization for oncological conditions such as renal cell

carcinoma, melanoma and Kaposi’s sarcoma and also for the

treatment of hepatitis, cirrhosis, viral infections and genital warts.

IFNg is being used for chronic granulomatous disease and osteo-

petrosis, whereas IFNb represents a leading therapeutic agent for

the treatment of multiple sclerosis. The colony-stimulating factors

GM-CSF and G-CSF are important therapeutic agents for neutro-

phil recovery after bone marrow and stem cell transplantation.

Recombinant TNFa is being used for the isolated limb perfusion
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TABLE 1

Approved cytokine-based pharmaceutical products

Cytokine Name Trade name Indication Refs

Cytokine-blocking monoclonal antibodies

TNF Adalimumab HumiraW Rheumatoid arthritis [95–110]

Infliximab RemicadeW Psoriatic arthritis, colitis, Crohn’s disease, psoriasis,

ankylosing spondylitis
Certolizumab CimziaW

Golimumab SimponiW

IL1b Canakinumab IlarisW Arthritis, cryopyrin-associated periodic syndromes [111,112]

IL2R Daclizumab ZenapaxW Renal transplant rejection [113]
IL12/IL23 Ustekinumab StelaraW Psoriasis [114]

IL17A Secukinumab CosentyxW Psoriasis [115]

IL6R Tocilizumab ActemraW Rheumatoid arthritis [116]
IL6 Siltuximab SylvantW Castleman’s disease [117]

Therapeutic cytokine products

IL2 Aldesleukin ProleukinW Renal cell carcinoma [118,119]

Metastatic melanoma
IL11 Oprelvekin NeumegaW Thrombocytopenia [120]

IFNa IFNa-2b IntronAW Hepatitis [121–127]

ViraferonW Melanoma

PEG-IFNa-2b PegIntronW Kaposi sarcoma
PEG-IFNa-2a PegasysW Hematologic cancer

IFNb IFNb-1b BetaseronW Multiple sclerosis [128–130]

IFNb-1a AvonexW

RebifW

PEG-IFNb-1a PlegridyW

IFNg IFNg-1b ActimmuneW Chronic granulomatous disease [131]

GM-CSF Filgrastim NeupogenW Neutropenia [132,133]

Sargramostim LeukineW

TNFa Tasonermin BeromunW Soft tissue sarcoma [134]

A summary of approved cytokine-based pharmaceuticals comprising cytokine blocking agents and recombinant cytokine therapeutics.
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treatment of patients with inoperable sarcomas, and IL11 received

marketing authorization for prevention of chemotherapy-induced

thrombocytopenia.

Therapeutic strategies centered on antibody-based blocking

agents can display a limited pharmaceutical benefit (or excessive

toxicities) when several cytokines contribute to a given pathologi-

cal condition [5]. By contrast, the use of recombinant cytokines as

therapeutic agents can suffer from certain limitations. For exam-

ple, receptor expression by many types of cells and tissues could

lead to substantial toxicities, especially for potent proinflamma-

tory cytokines. Alternatively, the inability to reach desired con-

centrations at the site of disease might limit pharmaceutical

activity [6].

In an attempt to improve their potency and selectivity, cyto-

kines can be fused to antibodies (or antibody fragments), serving as

pharmacodelivery vehicles. The resulting fusion proteins (referred

to as immunocytokines) are finding an increasing number of

applications in the treatment of cancer and other diseases. We

have previously reviewed the use of proinflammatory immunocy-

tokines for cancer treatment [7,8]. In this review, we analyze the

potential and challenge of immunocytokines for the treatment of

nononcological conditions, with a main focus on chronic inflam-

mation and autoimmunity.

Cytokines as payloads for nononcological applications
Immunocytokines represent a class of therapeutic agents with the

potential to modulate immunity at the site of disease and a

number of payloads can be considered for product development.
Indeed, the considerable amount of preclinical and clinical data,

available for the therapeutic use of unmodified cytokine products,

could provide inspiration for the development of targeted immu-

nocytokines. For example, IL10 and IL4 have extensively been

studied in the clinical setting, after having shown promising

results in preclinical animal models of various diseases. Recom-

binant human IL10 (tenovil) has been extensively studied for use

in rheumatoid arthritis, Crohn’s disease, organ transplantation,

hepatitis and psoriasis [9]. Although a clear superiority compared

with placebo control groups was observed for some indications

(e.g. rheumatoid arthritis), disease remissions were rarely ob-

served and for this reason the product was not advanced to Phase

III clinical studies. However, limiting toxicities were not observed

and the treatment was generally well tolerated. The fast clearance

of the product and the inability to localize at the site of disease

selectively could have contributed to a suboptimal therapeutic

performance [9]. Dose-limiting toxicities were observed for re-

combinant IL4, and the product failed to show sufficient activity

in patients with cancer [10–13]. By contrast, treatment of psoriasis

patients with IL4 (as a single agent or in combination with IL10

and IL11) led to a substantial reduction in disease symptoms, at

doses that were well tolerated (0.2–0.5 mg/kg) [14,15]. In a mouse

model of collagen-induced arthritis, suppression of clinical symp-

toms and delay of disease progression was achieved by adminis-

tration of recombinant murine IL4 [16]. Arthritis-suppressing

effects were further confirmed in subsequent animal studies

[17,18]. Clinical data on rheumatoid arthritis, however, have

not been described.
www.drugdiscoverytoday.com 181
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In practice, the choice of cytokine payloads for the development

of therapeutic agents in nononcological conditions remains large-

ly unexplored, as illustrated in the following sections. Cytokines

are particularly intriguing proteins for the design of agonistic

pharmaceutical products, because they often display different

biological activities, as a function of their concentration and

the concentration of other components (e.g. other cytokines,

pathogen-associated molecular patterns) at the site of disease.

Transforming growth factor (TGF)b, for example, suppresses cell

proliferation and stimulates excessive extracellular matrix (ECM)

growth at high doses. By contrast, at low doses, the same protein

induces opposite effects, with excessive cell proliferation, under-

production of ECM components and impaired wound healing

[19].

Furthermore, TGFb inhibits IL1b and IL8 expression in macro-

phages but induces it in endothelial cells [20]. Similarly, TNF

promotes angiogenesis at low doses but causes intraluminal blood

coagulation and blocks the formation of new vessels at high doses

[21]. A more global picture of opposing effects of a single cytokine

has been demonstrated in an experiment using the collagen-

induced animal model of arthritis. Injections of low doses of

IL12 led to worsening of the disease whereas administration of

high doses of the same cytokine significantly improved the ar-

thritic score [22].

Cytokines can have pro- and anti-inflammatory properties.

Levels of IL1, IL6 and TNFa, for example, are substantially elevated

in inflammatory conditions and these cytokines are considered to

be proinflammatory proteins. By contrast, IL10 is generally con-

sidered an anti-inflammatory cytokine, with the potential to

suppress immunity in physiological (e.g. pregnancy) and patho-

logical (e.g. cancer) conditions [23,24]. However, immunological

processes in inflammation are not a simple interplay between two

opposing classes of actors. The immunological environment, the

target cell and the concentration of the cytokine itself influence

the overall response [25–27].

Besides using naturally occurring cytokine payloads, mutants

generated using protein-engineering techniques could provide

some benefit in certain applications. As reported for the cytokines

IFN, IL2, IL4, IL13 and IL15, mutations in key residues within the

cytokine can alter the binding affinity to the cognate receptor,

modulate cytokine activity and/or promote a selective interaction

with different subsets of leukocytes [28].

Immunocytokine formats and target antigens
Antibodies can be used as full immunoglobulins or as antibody

fragments for the selective pharmacodelivery of cytokine pay-

loads, as shown in Fig. 1a. The IgG format promotes a long

circulatory half-life in blood, as a result of size and Fc recycling.

The molecular weight of 150 kDa exceeds the renal clearance

threshold of 70 kDa and prevents the protein from being elimi-

nated via the kidney. Additionally, the interaction with the neo-

natal Fc receptor leads to a continuous recycling process [29].

The bivalent nature of IgGs is considered to be advantageous,

because it can lead to a longer residence time at the site of disease,

increasing the functional affinity to the cognate antigen. High

blood levels of cytokine payloads, promoted by their fusion to IgG

molecules, might not always be desirable for pharmaceutical

applications, because they could lead to side-effects and decrease
182 www.drugdiscoverytoday.com
in vivo selectivity. However, fairly short circulatory half-lives (1.6–

8.2 hours) for IgG–cytokine fusion proteins have been reported in

clinical studies, owing to reasons that are not yet fully understood

[30,31]. One possible explanation for this could be cytokine-spe-

cific receptor-mediated clearance, which has been described for an

IgG-based fusion to IL2 [32]. For some applications, antibody

fragments might be preferable to achieve a long residence time

of the product at the site of disease, while being rapidly cleared

from the circulation. A variety of antibody formats could be

considered, with different biochemical properties (e.g. avidity,

size, Fc functionality) influencing in vivo behavior (e.g. retention

time at the site of disease, tissue penetration, blood clearance). In

most cases, bivalent antibody fragments are preferred for pharma-

codelivery applications, because they promote a longer residence

time on the target antigen. Rapid blood clearance inevitably

reduces the accumulation at the site of disease, but typically leads

to better in vivo selectivity (i.e. higher target:non-target organ

ratios) at early time points, as evidenced by quantitative biodis-

tribution studies with radiolabeled protein preparations [33–35].

Single-chain Fv fragments (scFv) are particularly attractive anti-

body fragments for immunocytokine development, because they

can lead to monomeric or dimeric (diabody) structures, depending

on the linker used to connect the VH and VL domain in the protein

[36,37]. Monomeric scFv fragment units are often used when the

cytokine payload is multimeric (e.g. members of the TNF super-

family) [38]. A summary of biodistribution properties for immu-

nocytokines based on intact antibodies and antibody fragments

has previously been reported [8].

The arrangement of antibody and cytokine moieties within the

recombinant protein also influences immunocytokine perfor-

mance (Fig. 1b). In most cases, cytokines and antibodies can be

modified at their N- and C-terminal extremities without loss of

function [39]. For some cytokines, however, a free N or C terminus

can be important for function. In addition, heterodimeric cyto-

kines (e.g. members of the IL12 superfamily) can offer additional

design possibilities, depending on the assembly of the two cyto-

kine subunits (Fig. 1c) [40–43]. When considering IgG-based

immunocytokines, C-terminal fusions to the heavy or to the light

chains have been proposed [44]. Indeed, depending on the length

of the linker, fusions to the light chain can favor different specifi-

cities toward certain cytokine receptor types. This has been dem-

onstrated using an IL2-based immunocytokine targeting

ganglioside GD2. One variant of the light-chain-fused immuno-

cytokine exhibited 1000-fold increased selectivity to the high

affinity abgIL2 receptor compared with the heavy-chain-fused

immunocytokine [44].

Antibody-based pharmacodelivery applications typically re-

quire specific antigens that are abundantly expressed at the site

of disease but are virtually undetectable in normal adult tissues. In

principle, accessible antigens on the cell surface or components of

the modified ECM could be considered. The identification of

targets for antibody-based pharmacodelivery approaches facili-

tates product development. Accessible antigens are conveniently

identified and quantified using perfusion-based in vivo biotinyla-

tion techniques. In this approach (which confirmed the value of

fibronectin and tenascin-C variants as accessible targets) [45,46]

endothelial proteins and ECM components can be enriched

using streptavidin-based capture reagents and analyzed by mass
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FIGURE 1

(a) Schematic illustration of different recombinant binding moiety formats suitable for immunocytokine development. (b) Frequently used immunocytokine

formats, including IgG heavy chain fusion, IgG light chain fusion, C- and N-terminal diabody fusion, C- and N-terminal scFv fusion (left to right). C: cytokine. (c)
Various immunocytokine formats for heterodimeric cytokine payloads, which have been used for the development of IL12-based immunocytokines [8,42].
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spectrometry [47]. Alternatively, transcriptomic studies of endo-

thelial cells using microarray chips to determine mRNA expression

levels can be performed to discover new putative target antigens.

Not all transcriptomic technologies can be used to study alterna-

tive splicing processes. For example, methods that detect only a

small portion of the mRNA molecule (e.g. most commercial micro-

arrays and serial analysis of gene expression) fail to detect the

insertion or the omission of an exon into the corresponding

transcript. Furthermore, mRNA levels are not always predictive

of protein abundance.

Macrophages and neutrophils seem to be promising sources of

target structures because they are abundant at the site of inflam-

mation. Apart from that, antigens on their surface can be shared

with circulating leukocytes leading to loss of targeting and sys-

temic toxicities. However, CD64, an internalizing antigen, abun-

dantly present on macrophages, monocytes and their progenitors,

has been shown to be a promising target. Treatment with CD64-

targeting antibody–toxin fusions in animal models of skin inflam-

mation, rheumatoid arthritis, ischemia-induced kidney injury and

cancer have been shown to be effective in ameliorating disease
[48]. The F4/80 antigen, a marker of murine macrophage popula-

tions, has been shown to be another suitable structure to target

macrophages in mice. Radiolabeled antibody preparations accu-

mulated in tumors, but to large extent also in the kidney, spleen

and liver [49]. The human homolog, EMR1, however, is not

expressed on macrophages but on mature blood and tissue eosin-

ophil granulocytes, which makes this approach hardly translatable

to man [50]. For eosinophilic disorders, however, EMR1 has been

shown to be a promising target because antibodies directed against

EMR1 enhance killing of eosinophils by natural killer cells in non-

human primates [51]. Besides infiltrating immune cells, compo-

nents of the modified ECM generated during the inflammatory

process are particularly attractive antigens for pharmacodelivery

applications. In rheumatoid arthritis and osteoarthritis these

structures can arise from reactive oxygen species mediated post-

translational modification of collagen type II (ROS-CII). The anti-

body 1-11E generated against ROS-CII was shown to localize

selectively at inflamed joints in a mouse model of arthritis [52].

A recent study in the collagen-induced model of arthritis revealed

that radiolabeled antibodies specific to fibroblast-activating
www.drugdiscoverytoday.com 183
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protein (FAP) accumulated at the sites of disease, with uptake

values that correlated with severity of inflammation [53]. Previ-

ously, FAP had been shown to be a suitable target for imaging of

carcinoma [54].

Alternatively spliced isoforms of fibronectin [containing extra-

domain (ED)A or EDB] and tenascin-C [containing extra-domain

A1 (TnC A1)], recognized by the human antibodies F8, L19 and

F16, respectively, represent possibly the most characterized ECM

components for pharmacodelivery applications [55,56]. These

antigens are often found around new blood vessels. Indeed, an-

giogenesis is a characteristic feature of cancer and chronic inflam-

matory conditions, but otherwise a rare event in health. Splice

isoforms of fibronectin and tenascin-C are usually undetectable in

normal adult human tissues, with the exception of the placenta

and uterus. Abundant expression, however, has been demonstrat-

ed not only in various cancer types but also in rheumatoid arthri-

tis, osteoarthritis, ulcerative colitis, chronic skin inflammation,

vasculopathy and endometriosis specimens (Fig. 2) [57–65].
Osteoarthritis

Endometriosis

Vasculopathy

Atherosclerosis

Psoriasis

FIGURE 2

Pharmacodelivery applications for monoclonal antibodies, specific to the extra-dom
adult tissues [87]. Tissue stainings adapted, with permission, from [46,57,59,61,62
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Preclinical studies with immunocytokines for
nononcological indications
Preclinical studies using IL10 fused to the L19 antibody (directed

against EDB, L19–IL10) or to the F8 antibody [directed against

EDA, F8–IL10 (dekavil)] in the diabody format revealed potent

inhibition of the progression of established disease in a model of

collagen-induced arthritis. Administration of L19–IL10 or F8–IL10

significantly lowered the arthritic score and led to reduced paw

swelling compared with saline and the untargeted cytokine

[62,65,66]. Moreover, combination of F8–IL10 with methotrexate

or a murine analog of etanercept (TNFR2–Fc fusion) increased

therapeutic activity in this setting [66,67]. Additionally, F8–IL10

significantly reduced lesion size in a mouse model of endometri-

osis [61].

IL10-based immunocytokine products are also described in a

patent application of Roche-Glycart. For the treatment or prophy-

laxis of inflammatory bowel disease or rheumatoid arthritis, the

cytokine was fused to an antibody specific to FAP, used in IgG
Cancer

Rheumatoid arthrtis

Ulcerative colitis

Drug Discovery Today 

ain A (EDA) of fibronectin, an antigen that is virtually undetectable in normal
,67].
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TABLE 2

Immunocytokines for nononcological conditions

Name Target Targeting moiety Targeting assessment Developmental stage (disease area) Refs

IL10

L19–IL10 EDB(+)FN L19 (diabody) Autoradiography and IVIS

fluoroscopy

Preclinical (RA, psoriasis) [63,65]

Quantitative biodistribution study
F8–IL10 (dekavil) EDA(+)FN F8 (diabody) Autoradiography Clinical Phase II (RA) [61,62,66,87,135]

Quantitative biodistribution study Preclinical (endometriosis cardiac

rejection)

N/A FAP 4B9/4G8 (IgG/Fab) Quantitative biodistribution study N/A (RA, IBD) [68]

vIL10

1-11E/vIL10 ROS-CII 1-11E (scFv) IVIS fluoroscopy Preclinical (RA) [69]

IL4

F8–IL4 (tetravil) EDA(+)FN F8 (diabody) Autoradiography Preparation for clinic (RA) [59,67,70,77]
Quantitative biodistribution study Preclinical (psoriasis endometriosis

cancer)

IL4–TP/IL4–SP Synovial
endothel-ium

SyETP (peptide) Nano-SPECT-CT Preclinical (RA) [71]

IL2

L19–IL2 EDB(+)FN L19 Quantitative biodistribution Preclinical (atherosclerosis) [73,136]

IL12p40

F8–IL12p40 EDA(+)FN F8 (diabody) Autoradiography Preclinical (IBD) [57]

Summary of preclinically or clinically investigated immunocytokines for the treatment of nononcological conditions. Abbreviations: FN, fibronectin; RA, rheumatoid arthritis; IBD,

inflammatory bowel disease.
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format [68]. In another approach, the 1-11E antibody (directed

against ROS-CII) in scFv format was fused to viral IL10, which is

considered to be a less immunostimulatory variant of its human

counterpart. The resulting fusion protein was able to inhibit

disease progression in a mouse model of antigen-induced arthritis.

Similar results were obtained by combining the antibody to the

soluble portion of mTNFRII receptor fused to an Fc moiety [52,69].

IL4 represents a second attractive cytokine payload for certain

inflammatory conditions and other nononcological diseases. An

IL4 fusion to the F8 antibody in the diabody format [F8–IL4

(tetravil)] exhibited high therapeutic efficacy in mouse models

of endometriosis, psoriasis and rheumatoid arthritis. Importantly,

complete cures in a mouse model of rheumatoid arthritis were

achieved when F8–IL4 was administered in combination with

dexamethasone [67]. Moreover, F8–IL4 decreased ear swelling in

imiquimod (IMQ)-induced and contact-hypersensitivity-induced

mouse models of chronic skin inflammation. The therapeutic

effect in the mouse was comparable to the one achieved using

treatment with a murine version of etanercept [59]. Recent data

further revealed that F8–IL4 could significantly reduce endome-

triotic lesion progression in an immunocompetent mouse model

of the disease, whereas no effect could be observed for equimolar

doses of untargeted IL4 [70].

As an alternative to antibody-based pharmacodelivery, a

phage-display-derived cyclic peptide binding to inflamed synovi-

al endothelium (SyETP) was fused to IL4, yielding a cytokine

derivative that selectively accumulated in synovial tissue xeno-

grafts but not in skin xenografts in a model of human/SCID

chimeric rheumatoid arthritis. Increasing the binding avidity

of the fusion protein by adding three cyclic peptide units led to

an increased uptake into the synovial tissue. In vivo activity of the

fusion protein was also confirmed by analysis of phosphorylated

signal transducer and activator of transcription (STAT)6 levels in

the xenografts [71].
Besides being an important product in cancer treatment, IL2 can

have a beneficial effect for certain anti-inflammatory strategies by

stimulating regulatory T cells [72]. In a mouse model of athero-

sclerosis in apoE-deficient mice, administration of a fusion of IL2

to the L19 antibody induced rapid shrinkage of atherosclerotic

plaques [73].

Naturally occurring homodimers of the p40 subunit of IL12

(IL12p40) have been reported to exert anti-inflammatory activi-

ty by antagonizing IL12 and IL23 [74–76]. An immunocytokine

comprising IL12p40 and the F8 antibody has recently been

shown to promote more-rapid clinical recovery and morpholog-

ical improvement in the dextran sulfate sodium (DSS)-induced

mouse model of colitis compared with mice treated with saline

or cyclosporine A [57]. A summary of reported immunocyto-

kines explored for nononcological conditions is shown in

Table 2.

Disease-homing properties of immunocytokines
The ability to localize selectively at the site of disease represents an

important aspect for the development of immunocytokine pro-

ducts. Disease-homing properties of antibody products are best

characterized in quantitative biodistribution studies, using radio-

iodinated protein preparations. In most cases, tumor-bearing ani-

mals are used for these studies, because it is easy to weigh

neoplastic lesions and count radioactivity in those specimens.

However, disease-homing properties in nononcological condi-

tions can be adequately studied by noninvasive radioactive or

fluorescent imaging techniques or by autoradiography [66,67].

Microscopic analysis of protein localization in tissue sections

(e.g. by microautoradiography or by fluorescence microscopy)

can provide complementary information on structures that can

be reached in vivo by the product.

Using the F8 and L19 antibodies (specific to alternatively spliced

isoforms of fibronectin that are conserved in mouse and man),
www.drugdiscoverytoday.com 185
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biodistribution studies with radiolabeled immunocytokines in

tumor-bearing mice have revealed three basic patterns of possible

pharmacokinetic behavior. In the most favorable situation, the

cytokine payload does not impair the disease-homing properties of

the parental antibody at various concentration ranges, which are

compatible with pharmacological activity. In the mouse this

situation has been observed for various cytokine payloads, includ-

ing IL2, IL4, IL6, IL10, IFNa and TNF, to name just a few

[38,39,62,77,78]. For more-complex cytokines (e.g. IL12) biodis-

tribution properties heavily depend on the format chosen for the

fusion with antibody moieties [42].

For a number of payloads (e.g. GM-CSF, IFNg) the ability of the

corresponding immunocytokine product to localize at the site of

disease was found to be dose dependent. The experience with two

IFNg fusion proteins was particularly informative. Derivatives of

the L19 and F8 antibody failed to localize selectively to tumors in

biodistribution studies when used at a dose of 5–15 mg per mouse.

However, tumor-homing properties could be recovered in knock-

out mice devoid of IFNg receptor, or after pre-administration of

suitably high unlabeled doses of the fusion protein [79,80]. These

observations suggest that, for some payloads, cytokine receptors

can trap the therapeutic agent and that selective disease targeting

might only become efficient once receptors in normal organs have

been saturated. Indeed, simple in vitro tests based on the incuba-

tion of radiolabeled products with whole blood, followed by

centrifugation and radioactive counting of supernatant and pellet,

could provide valuable information about the in vivo performance

of the corresponding protein.

In some cases, cytokine payloads (or other protein payloads)

could completely abrogate the disease-homing properties of the

parental antibody. Such an unfavorable situation has been ob-

served with highly charged polypeptides [81–83] with very large

fusion proteins [84] and with heavily glycosylated products [85].

Recent biodistribution studies with IL9-based immunocytokines

revealed that protein production conditions in mammalian cells

could have a profound influence on glycostructures (including

sialylation) and on extravasation properties [86].

In many cases, cytokine payloads can be fused at the N and C

terminus of recombinant antibody fragments, without substan-

tial differences in biological activity and biodistribution prop-

erties [39]. However, because different pharmacokinetic profiles

are often observed with different immunocytokine formats, it

remains important to perform biodistribution studies before

selecting a product candidate for industrial development

programs.

Concluding remarks: immunocytokines in clinical
development programs and emerging trends
To date, one immunocytokine for the treatment of nononcological

diseases has entered the clinical phase. Dekavil (F8–IL10) is currently

being studied in a Phase II clinical trial for the treatment of patients

with rheumatoid arthritis. A Phase Ib study of dekavil in combina-

tion with methotrexate revealed an excellent tolerability and pre-

liminary signs of activity [87,88]. In this study, 60% of treated

patients showed a reduction of the arthritic score of 20%

(ACR20), 32% of treated patients achieved ACR50 and 16% of

treated patients even reached ACR70 [88]. A second immunocyto-

kine [F8–IL4 (tetravil)] is currently completing safety toxicological
186 www.drugdiscoverytoday.com
testing in non-human primates before clinical testing in patients

with endometriosis or with rheumatoid arthritis.

In principle, it would be conceivable to deliver cytokine pay-

loads for a variety of pathological conditions, with the aim to

boost or inhibit inflammation and leukocyte activity. In addition,

cytokines can facilitate tissue-remodeling processes. Although

this field of investigations is still in its infancy, the approach

remains particularly attractive, not only in view of the potent

activity that cytokines display in vivo but also because of the

modular nature of product development activities. In most cases,

antibodies for pharmacodelivery applications are chosen on the

basis of their immunohistochemical properties and biodistribu-

tion patterns. Once a validated disease-homing antibody

becomes available this agent can be systematically fused to many

different payloads and the corresponding biopharmaceuticals

can be studied in vivo. Comparative studies typically shed light

on the beneficial or detrimental role that individual cytokine

moieties might have on the pathological condition of interest.

Indeed, emerging experimental evidence indicates that the com-

bination of immunocytokine products could display a potent

synergistic or antagonistic activity at the site of disease

[77,84,89–91]. Immune responses are typically regulated by mul-

tiple signals and we anticipate that the combined use of multiple

immunocytokine products will represent an important research

focus in the near future.

The activity of disease-targeting immunocytokines heavily

relies on a product’s ability to localize at the pathological site.

Although tissue distribution properties are easy to study in animal

models, the execution of imaging studies in patients is complicat-

ed by various types of hurdles. Nuclear medicine studies require

radiolabeled preparations of the study drug, thus adding complex-

ity to product development in terms of regulatory compliance,

radiosafety and patient recruitment. Guidelines for easier clinical

execution of microdosing studies have been released and Phase 0

clinical trials with radiolabeled antibody preparations have recent-

ly been reported [92]. Nonradioactive detection methodologies

(e.g. near-infrared fluorescence imaging) might be attractive for

the study superficial lesions (e.g. psoriatic lesions or inflamed

joints in arthritis) [93,94] but also in this case the biopharmaceu-

tical agent needs to be chemically modified for the execution of

imaging studies.

In summary, antibody–cytokine fusion proteins represent an

emerging class of biopharmaceutical agents for the treatment not

only of cancer but also of other conditions, including chronic

inflammatory processes and autoimmunity. In some cases (e.g.

IL2, IL10) a human cytokine payload can be used in preclinical

studies and in patients, but most of the times surrogate products

(based on rodent cytokines) will be needed for studies in mice and

rats, whereas the corresponding fully human fusion protein will be

required for clinical applications. The ability to characterize dis-

ease-homing properties of the product efficiently and to assess

optimal payloads (or payload combinations) will be crucial for

pharmaceutical success.
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