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Pathogenesis of type 1 diabetes involves the activation of autoimmune T cells, consequent homing of

activated lymphocytes to the pancreatic islets and ensuing destruction of insulin-producing b cells.

Interaction between activated lymphocytes and endothelial cells in the islets is the hallmark of the

homing process. Initial adhesion, firm adhesion and diapedesis of lymphocytes are the three crucial

steps involved in the homing process. Cell-surface receptors including integrins, selectins and

hyaluronate receptor CD44 mediate the initial steps of homing. Diapedesis relies on a series of

proteolytic events mediated by matrix metalloproteinases. Here, molecular mechanisms governing

transendothelial migration of the diabetogenic effector cells are discussed and resulting

pharmacological strategies are considered.
Islet-directed homing of autoreactive T cells: a key step
in progression toward T1D
Type 1 diabetes (T1D) is a major debilitating human disease with

an onset early in childhood. T1D progresses through the activation

of autoreactive T cells, followed by homing of activated T cells into

the pancreatic islets, and manifests itself through the elimination

of b cells by cytotoxic T cells. Both CD4+ and CD8+ T-lymphocytes

are involved in diabetogenesis [1,2]. Nonobese diabetic (NOD)

mice lacking CD4+ or CD8+ cells do not develop diabetes [1,3].

The identification of insulin as an auto-antigen in the develop-

ment of T1D and specifically insulin B chain-derived peptide

InsBa.a.15–23 as a major autoreactive determinant [4] enabled

researchers to study various functions of CD8+ T cells reactive

to this peptide [4–6]. InsBa.a.15–23-reactive CD8+ (IS-CD8+) T cells

seem to have an important role during the early stages of progres-

sion toward T1D. At the initiation of insulitis, they dominate peri-

islet infiltrates [4] and facilitate islet-bound traffic of other cell

types [7].

Successful therapies of T1D will require the repair of immuno-

logical tolerance breakdown and the restoration of insulin-produ-

cing b-cell mass [8]. Current literature suggests that compensatory
Corresponding authors:. Savinov, A.Y. (asavinov@sanfordhealth.org),

Burn, P. (burnp@sanfordhealth.org)

1359-6446/06/$ - see front matter � 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2010.05.013
endogenous b-cell regenerative processes occur during at least

initial stages of T1D [9–11]; however, the de novo developing b

cells are probably continually affected by transmigrating autoim-

mune T cells. It is hypothesized that diminishing the rate of T-cell

transmigration into pancreatic islets might facilitate restoration of

functional b-cell mass and result in an associated increase of

insulin production [12]. Thus, interfering with the homing process

might translate into innovative and effective therapies for T1D.

General mechanism of T cells homing into target
tissues
T cells follow certain rules when homing to the secondary lymphoid

organs, to specialized barrier compartments and to sites of inflam-

mation. Widely accepted mechanisms of T-cell homing [13]

describe interactions between T cells and endothelial cells (ECs),

which are mediated by several classes of adhesion molecules

[14–16]. The homing process per se can be divided into three

key steps: initial adhesion (tethering and rolling), firm adhesion

(activation-dependent arrest of rolling) and diapedesis (Fig. 1).

Initial adhesion of T cells is mediated by the L-selectin, ligands

for tissue-specific P- and E-selectins and integrins. These surface T-

cell molecules interact with the respective EC ligands, enabling

rolling of T cells on endothelial surface [16–18]. Activation of

T-cell integrins, which increases integrins’ affinity for the
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FIGURE 1

Molecular interactions mediating intra-islet homing of autoreactive insulin-specific CD8+ T cells. Red arrows depict progression of T cell through all of the traffic

stages indicated in red underlined text on top of the scheme; blue arrows indicate the direction of T-cell locomotion at each individual traffic stage. Black arrows

illustrate intracellular signaling cascades. CAMs, cell-adhesion molecules; GEF, guanine-nucleotide exchange factor; HA, hyaluronan; MHC I, major
histocompatibility complex class I; MT1-MMP, membrane-tethered matrix metalloproteinase 1; PSGL-1, P-selectin glycoprotein ligand-1; TCR, T-cell receptor.
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corresponding EC-adhesion molecules (CAMs) [19–21], promotes

the transition of slow rolling into the firm adhesion of T cells to

endothelium [14,22]. Chemokines, expressed in a tissue-specific

manner, mediate integrin activation by triggering cognate G-

protein-coupled receptors on T cells [15,20,21,23]. Thus, tissue-

specific adhesion molecules and chemokines contribute to the

specificity of T-cell trafficking. T-cell diapedesis includes a series of

lymphocyte cytoskeletal rearrangements mediated by chemo-

kines; in addition, diapedesis is potentiated by a series of proteo-

lytic events mediated by various proteases, including matrix

metalloproteinases (MMPs) [24–26]. Proteolysis modifies adhesive

strengths of lymphocyte–endothelial interactions and thereby

enables extravasating T cells to successfully penetrate the base-

ment membrane and the interstitial extracellular matrix (ECM)

barriers.

In conclusion, a multitude of lymphocyte–EC receptor–ligand

interactions are implicated in the homing process. Its specific use

varies widely, depending on T-cell subset, homing compartment,

site of T-cell priming and other, yet to be identified, factors.

Dissecting molecular mechanisms that, when modulated, will

interfere with homing of diabetogenic T cells is a scientifically

challenging but rewarding task to perform.

Mechanism of islet homing: pancreatic traffic of insulin-
specific CD8+ T cells
Initial tethering and rolling
It is generally believed that antigen-experienced effector T cells

travel more efficiently to inflamed tissues because they upregulate

adhesion molecules and chemoattractant receptors for inflamma-

tion-induced ligands [13,27]. Neither the tissue-specific CAMs,

upregulated by inflammation, nor the inflammatory chemokines

did provide for the specificity of IS-CD8+ T-cell traffic, however,
532 www.drugdiscoverytoday.com
because these cells efficiently homed to completely uninflamed

islets of NOD-scid, NOD-Rag1�/�, DBA/2 and BALB/C mice and did

not home to inflamed salivatory and lacrimal glands of NOD mice

[5]. Thus, it seems that not inflammatory but tissue-specific signals

direct diabetogenic T-cell traffic and affect T-cell motility.

Multiple experiments utilizing transfer of diabetogenic lympho-

cytes confirmed precise homing specificity of transferred cells,

which targeted only pancreatic islets, but not other tissues,

whether inflamed or uninflamed. This fact, taken together with

the well-documented specificity of diabetogenic T cells for the

islet-derived antigens, led to the suggestion that pancreatic hom-

ing can be driven by the T cells receiving antigenic stimuli from

endothelium of pancreatic microvessels. Indeed, homing of IS-

CD8+ cells depended on endothelial MHC class I expression and

the ability of ECs to cross-present pancreatic antigen because

adherence of IS-CD8+ cells to EC monolayers was in direct correla-

tion with availability of MHC class I–insulin peptide complexes in

vitro [5]. In agreement, upon transfer of diabetogenic T cells into

MHC class I deficient NOD.b2m�/� intra-islet trafficking of trans-

ferred cells was undetectable in the short term [5], and the for-

mation of insulitis in recipient mice was extremely delayed in the

long term [28]. Transgenic overexpression of b2m molecules in the

b cells of NOD.b2m�/�TgRIP-b2m animals probably provided

enough soluble b2m to restore MHC class I expression in all

subsets of islet cells, including ECs, and resulted in return of speedy

insulitis and subsequent diabetes after the transfer of diabetogenic

T cells [28]. Cross-presentation of insulin-derived peptides is a

unique property of islet ECs which routinely transport extremely

high concentrations of locally secreted insulin and, thus, are likely

to endogenously process it to peptides, load these peptides onto

their MHC class I molecules and cross-present resultant MHC–

peptide complexes to diabetogenic IS-CD8+ T cells, facilitating T
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cells islet-specific homing [5] (Fig. 1). Similarly, it was reported that

the levels of MHC class I molecules on ECs loaded in vitro with the

cognate peptides had a profound effect on the activation, adhesion

and transmigration of pathogenic islet-reactive CD8+ T cells [29].

In addition, antigen cross-presentation by endothelium has been

recorded in transplantation models [30–32]. Hence, EC antigen

cross-presentation is probably a general phenomenon in organ-

specific autoimmunity crucially involved in the regulation of

homing of autoreactive T cells. This notion is further supported

by the observation that the cognate recognition of endothelium in

vivo enhanced the tissue-specific traffic of HY antigen-reactive

CD8+ T cells [33].

The general consensus is that initial adhesion of T cells to ECs

depends on selectins and their ligands: L-selectin (CD62L), PSGL-1

(CD162) and E-selectin ligands binding to their endothelial recep-

tors, L-selectin ligands – GlyCAM, PNAd, CD34 and MAdCAM; P-

selectin; and E-selectin, respectively. Selectin-mediated adhesion

bonds have high ‘on’ and ‘off’ rates and last a few seconds or less,

thus ideally contributing to short initial tethering of T-lympho-

cyte on the endothelial surface [34]. To date, no literature data

connect PSGL-1 and E-selectin ligands, expressed on surface of

some subsets of activated islet-specific T cells, with either their

islet-specific homing or development of diabetogenic islet infil-

trates. Monoclonal antibody, raised against mouse PSGL-1

(CD162), attenuated incidence of TID, most probably by direct

induction of apoptotic death of activated T cells [35]. L-selectin,

however, was implicated in the development of diabetes, despite

being nondetectable in most diabetogenic CD8+ T-cell species

[5,7]. By contrast, CD4+ T cells expressing high levels of L-selectin

seem to home to the islets where they exhibit regulatory function.

CD4+CD62L+ T cells, but not CD4+CD25+ T cells, have been

reported to inhibit diabetes transferred into NOD-scid recipients

by transgenic NOD.TgBDC2.5-scid cells [36]. L-selectin, however,

is dispensable for the spontaneous T1D development because NOD

mice with disrupted L-selectin gene develop disease similarly to

their nonmodified littermates [37]. This study is consistent with

the observation that subcutaneous antigen priming produced

islet-reactive T cells, which used neither VCAM-1 nor MAdCAM

interactions to home to pancreatic islets [38]. Moreover, antibody

neutralization of L-selectin or P-selectin ligand, alone or in com-

bination, had no effect on either islet homing of these T cells or

development of diabetes [38]. Thus, none of the molecules gen-

erally implicated in the regulation of initial T-cell adhesion can

provide for the pancreas-specific homing of diabetogenic T cells.

It seems that not binding of selectins to their ligands, but rather

TCR–MHC adhesive interactions, serve as a basis for initial tether-

ing and rolling of islet-bound IS-CD8+ T cells (Fig. 1). Recent

studies demonstrated that the TCR coreceptor CD8 has a crucial

role in antigen-specific binding of murine and human TCRs [39–

41]. In some cases, CD8 acts as an adhesion molecule, stabilizing

the TCR–MHC interaction that is sufficient to maintain firm T-cell

adhesion under shear conditions [42].

In summary, the dynamic nature of the initial tethering and

rolling process, along with the complexity of the signals involved

in its regulation, has hindered progress in identifying potential

drug targets and candidate molecules capable of interfering with

the initial step of adhesion of diabetogenic T cells to the endothe-

lium. One attractive approach that could be tested in animal
models of T1D involves the blocking of insulin-reactive TCRs

on autoreactive T cells using soluble MHC–insulin–peptide fusion

complexes. Soluble MHC–peptide treatment has the potential to

prevent intra-islet transmigration but can also trigger multiple

changes in T-cell activation, drive insulin-reactive T cells into an

anergic state or induce apoptosis of diabetogenic T cells. Thus, this

approach might translate into meaningful therapeutic solutions in

due time.

Activation of integrins
Circulating T cells maintain their integrins mostly in an inactive

state and must undergo in situ modulation to develop high avidity

of integrins for their endothelial ligands to establish firm shear-

resistant adhesion on endothelium of target organs [43]. This

process is known as activation of integrins; it occurs within a

fraction of a second of initial tethering and rolling [44] and

manifests as the regulated increase of integrins’ adhesiveness in

the absence of marked changes in integrins’ cell-surface expression

levels. Activation of integrins on the surface of islet-bound diabe-

togenic T cells is driven by two independent, but co-operating,

mechanisms: TCR engagement is the specific component, and

chemokine receptor signaling is the nonspecific component of

the pathway.

TCR-mediated integrin activation
This process requires presentation of pancreatic antigens, such as

insulin, by ECs. TCR ligation induces activation of interleukin-2-

inducible T-cell kinase, which potentiates formation of the linker

for activation of T cells (LAT)–VAV1–SLP76 signaling complex,

which, in turn, is linked to the activation of phospholipase C-g1

(PLC-g1) [45–48]. In T cells, PLC-g1 acts through activation of

several guanine-nucleotide exchange factors (GEFs) and leads to

activation of small GTPase – RAP1, which, in turn, binds its ligand

RAPL [49,50]. The RAP1-RAPL pair seems to be the centerpiece in

the crossroads of inside-out signaling because it is activated by

both TCR ligation and chemokine receptor triggering. After TCR

ligation, activated RAP1 associates itself with RAPL, which then

forms complex with LFA-1 and quickly initiates LFA-1 conforma-

tional changes and membrane translocation. Dominant-negative

RAPL inhibits TCR-ligation-induced upregulation of LFA-1 avidity

[51]. RAPL-deficient T cells also show defective LFA-1-mediated

adhesion after stimulation through the TCR [52]. Moreover, TCR

activation results in direct phosphorylation of GEF2 at Ser960 by

PKC-u, which translates into RAP1 activation and drastic increase

of LFA-1 adhesiveness to ICAM-1 [53]. In agreement, IS-CD8+ cells

upregulated integrin avidity upon stimulation of their TCR [5].

Chemokine receptor-mediated integrin activation
Stimulation of T cells with chemokines induces patch-like cluster-

ing of LFA-1 and micro clustering of VLA-4, increasing T cells’

adhesion to ICAM-1 molecules [20] and providing for transition

from tethering into T cells’ firm adhesion under shear flow [27].

Chemokines act through G-protein-coupled receptors on the sur-

face of T cells. They activate several signaling pathways including

the phosphatidylinositol 3-kinase, PLC, RAS- and RHO- (RAS

homolog) family small GTPases, as well as mitogen-activated

protein kinase signaling cascades, which result in the activation

of the same RAP1/RAPL pair (as does TCR signaling) [52]. Activated
www.drugdiscoverytoday.com 533
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RAP1 binds RAPL and forms a complex with intracellular LFA-1.

This results in LFA-1 clustering (which modulates LFA-1 valency at

the leading edge) and potentiates establishment of the firm adhe-

sion of T cell [52].

In summary, we can infer that the complex of small GTPase

RAP1 and its intracellular ligand RAPL leads to integrin activation

on T cells [54]. RAP1 is activated by a variety of external stimuli,

including chemokines CCL21 and CXCL12 [55] and TCR signaling

[56,57]. Inhibition of RAP1 by signal-induced proliferation-asso-

ciated protein 1 – a RAP1-specific GTPase-activating protein that

promotes GTP hydrolysis – abrogates chemokine-induced adhe-

sion that is mediated by both LFA-1 and VLA-4 [55]. Hence, RAP1

has an important role in inside-out signaling triggered by both

chemokine receptors and TCR engagement.

Several chemokines are associated with the development of

T1D. Increased levels of TH1 cell-derived chemokines CCL3,

CCL4 and CXCL10 were found in the serum of patients recently

diagnosed with T1D [58–60]. In addition, a negative correlation

between the blood levels of CCL3 and C-peptide was identified in

cohorts of T1D patients [61]. Diabetogenic TH1 cells in NOD mice

expressed the CCR5 receptor and its ligand CCL3 [62,63]. Deletion

of CCL3 in NOD mice ameliorated symptoms of insulitis and

delayed autoimmune diabetes. These effects seemed to be rather

monocyte- than T-cell-mediated, however, because CCL3 prefer-

entially attracts macrophages and/or monocytes and CCL3 pro-

duction in the islets is completely infiltrate-dependent [62].

Primary cultures of murine and human pancreatic islets

expressed and secreted CCL2 [64]. High basal CCL2 production

by human islets correlates with a poor clinical outcome after islet

transplantation in patients with T1D [65]. During the course of

diabetes, macrophages are probably the first cells to infiltrate islets

of NOD mice and BB rats; depletion or inactivation of macro-

phages prevented development of TID [66]. CCL2 and CCL5

attract macrophages and other monocytes; their expression in

the islets of NOD mice parallels disease progression and contri-

butes to the formation of insulitis [62,64,65,67]. Transgenic

expression of CCL2 in the islets succumbed T1D-resistant mice

to develop spontaneous diabetes. Development of diabetes in

these mice correlated with the accumulation of large numbers

of monocytes in the islets, however, and did not depend on T and B

cells [68]. This accumulation was reversed by CCR2 deficiency [68]

and is in agreement with studies in CCR2�/� NOD mice, which

exhibited delayed inflammatory cell recruitment [69]. By contrast,

deletion of CCR5 led to accelerated diabetes, which was associated

with aggressive insulitis and was accompanied by altered leuko-

cyte migration into islets of NOD.CCR5�/� mice. Nevertheless,

diabetogenic cells from NOD.CCR2�/� and NOD.CCR5�/� mice

showed similar potency to adoptively transfer diabetes into

NOD.scid recipients, suggesting that deletion of CCR2 or CCR5

on diabetogenic T cells did not affect their migratory properties

[69]. Depending on the stage of the autoimmune process, inter-

ference with chemokine receptors might lead to unexpected con-

sequences; monoclonal anti-CCR5 antibody treatment, used late

in the autoimmune process, accelerated diabetes onset in NOD

mice [70].

Both newly diagnosed and longstanding T1D patients were

reported to have reduced amounts of CCR4+ cells in peripheral

blood [71]. In the NOD mice, expression of CCR4 ligand CCL22 on
534 www.drugdiscoverytoday.com
pancreatic islets induced intensive recruitment of CCR4+ cells and

accelerated disease, whereas the use of CCL22-neutralizing anti-

bodies attenuated onset of T1D after adoptive transfer of diabeto-

genic cells. This effect, however, was attributed to the block of

homing of CD4+ T cells not to the islets but to pancreatic lymph

nodes, where CCL22 is primarily expressed on dendritic cells [72].

Unlike other chemokine receptors, CXCR4 molecule is

expressed widely and is involved in basal trafficking of naive

lymphocytes [73]. In humans, polymorphisms in CXCL12 gene,

which codes the natural ligand for CXCR4, are linked to suscept-

ibility to TID [74,75]. Transgenic overexpression of CXCL12 in the

islets of C57BL/6.TgRIP-CXCL mice provided resistance to strep-

tozocin-induced b-cell apoptosis and diabetes and promoted b-cell

survival via activation of the antiapoptotic Akt kinase [76]. CXCR4

RNA levels increase early in the islets of NOD mice [77]. Aboumrad

and colleagues showed that in NOD mice, CXCR4+ T cells specific

for islet antigens displayed mostly regulatory function and, thus,

completely abolished capacity of diabetogenic T cells to transfer

diabetes. Administration of specific CXCR4 inhibitor AMD3100

accelerated adoptive transfer of diabetes, reduced numbers of

CXCR4+ T regulatory cells in the islets and increased numbers

of autoreactive T cells and severity of insulitis [78]. The most recent

study by Leng et al. [79], however, reported an opposite effect of

CXCR4 inhibition, showing that continuous AMD3100 treatment

of prediabetic NOD animals decreased accumulation of T cells in

the bone marrow, significantly increased numbers of T regulatory

cells in the periphery, dramatically reduced insulitis and protected

animals from development of spontaneous diabetes. Consistent

with this observation, injection of antibodies neutralizing

CXCL12 was effective in inhibiting diabetes and insulitis without

affecting autoimmune sialoadenitis in NOD mice [80]. These

seemingly conflicting results can, at least in part, be explained

by different adhesion properties of subsets of CXCR4+ T cells with

regulatory and cytotoxic phenotypes because CXCL12 was able to

block adhesion of certain populations of diabetogenic T cells to the

islet EC monolayers in vitro in a dose-dependent manner, whereas

inhibition of T cells’ CXCR4 with neutralizing antibodies reversed

these SDF-1 chemorepulsive effects [81]. Thus, the CXCL12–

CXCR4 axis indeed has a considerable role during T1D pathogen-

esis, providing for islet homing of autoreactive T cells and promot-

ing b-cell survival.

Several lines of evidence suggest an important role for chemo-

kine receptor CXCR3 and its ligands CXCL9, CXCL10 and

CXCL11 in the pathogenesis of diabetes. Pancreatic b cells produce

CXCL10 and CXCL9 chemokines, which specifically attract T-

effector cells via the chemokine receptor CXCR3 [67]. A relevant

role for these locally produced chemokines was observed in the

mouse model of lymphocytic choriomeningitis virus (LCMV)-

induced autoimmune diabetes. In these mice, complete absence

of CXCR3 delayed onset of insulitis and diabetes, and blockade of

CXCL10 – but not that of CXCL9 – prevented the development of

T1D after LCMV infection [67]. Mechanistically, CXCL10 blockade

impeded the expansion of peripheral Ag-specific T cells and

obstructed their migration into the pancreas [82]. Conversely,

LCMV-induced overexpression of CXCL10 accelerated the onset

of T1D [82]. T1D-resistant B6 mice, engineered to express CXCL10

in the pancreatic islets (C57BL/6Tg.RIP-CXCL10), had limited

insulitis and no spontaneous diabetes; however, when crossed
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to C57BL/6Tg.RIP-NP mice, expressing LCMV nucleoprotein in the

b cells, such animals had massively accelerated T1D after LCMV

infection, characterized by a drastic increase in nucleoprotein-

specific, autoaggressive CD8+ T cells in the pancreas [83]. In

DO11.10 TCR transgenic (RIP)-mOVA mouse model of T1D, subset

of CD4+ Tregs potently suppressed islet tissue infiltration via

downregulation of CXCR3 on the surface of TH1 effector cells,

which failed to respond to pancreatic islet-derived CXCL10 and

infiltrate the islets [84]. Similarly, T1D patients showed a reduced

expression of CXCR3 on CD4+ peripheral blood T cells at the time

of diagnosis, but not 12 months later, suggesting that CXCR3+

peripheral T cells are reduced in a narrow time window, possibly

because of extravasation into the inflamed pancreas [71]. In addi-

tion, secretion of CXCL10 by autoaggressive IS-CD8+ T-cell clones

obtained from NOD mice determined their efficient intra-islet

homing and high diabetogenic capacity [7]. Taken together, these

findings suggest that the CXCL10–CXCR3 axis might present a

broadly applicable target for the inhibition of T-cell recruitment

into the pancreatic islets during T1D.

The other important set of chemokine–chemokine receptor

molecules directly involved in the intra-islet migration of auto-

reactive T cell seems to be CCR7 and its ligands CCL21 and CCL19.

CCL19 and CCL21 are expressed in immediate islet vicinity, in

paraductal areas and their expression was increased in islet areas

rich in inflammatory cells [85,86]. CCR7 regulates migration of T

cells and other leucocytes into secondary lymphoid organs [87,88],

where it is implicated in control of cytotoxic T-cell priming

[89,90], and also plays a part in the induction and maintenance

of central and peripheral tolerance [91,92]. A recent study has

implicated that differences in surface expression of CCR7 affected

migration pattern of transferred diabetogenic T cells [93]. Earlier, it

was shown that CCL21 expression within the immediate islet

vicinity is an absolute prerequisite for the intra-islet homing of

diabetogenic IS-CD8+ T cells [5]. In addition, diabetogenic CD4+ T

cells sensed and migrated toward the gradient of CCL21 [94]. In

agreement, the higher percentages of CD8+CCR7+ lymphocytes

and the lower percentages of CD8+CD45RO+ cells were detected in

peripheral blood of patients with recent onset of T1D, compared

with healthy children. This might reflect the selective recruitment

of activated CCR7+CD8+ T cells into the pancreas [95]. Another

recent study found that CCR7-deficient NOD mice (NOD.CCR7�/

�) never developed diabetes but showed severe inflammation in

multiple tissues, including thyroid, lung, stomach, intestine,

uterus and testis [96]. This suggests a complexity in the generation

of multiple autoimmune phenotypes in NOD mice and indicates

that CCR7 is a key molecule affecting their development.

In summary, the specificity and complexity of the chemokine

system – which implies release of specific chemokines in different

tissue compartments at different time-points of T1D pathogenesis,

on the one hand, and tightly regulated expression of chemokine

receptors on different subsets of T cells, on the other hand – makes

it extremely difficult to identify the unique role of individual

chemokine–receptor pairs in islet-specific migration of diabeto-

genic T cells. However, a recent study utilizing overexpression of

murine gammaherpesvirus-68 M3 gene in islets of NOD mice [97]

opened a very promising avenue on interference with chemokine

signaling-induced T-cell homing events during T1D pathogenesis.

The M3 gene encodes a secreted 44-kDa protein with no sequence
similarity to known chemokine receptors. It was shown to bind with

high affinity a broad range of chemokines, including the ones

upregulated in the NOD model of TID (i.e. CCL2, CCL3, CCL4,

CCL5 and CCL21). The M3 gene product binding efficiently blocked

chemokines from interactions with their receptors and inhibited

chemokine-induced elevation of intracellular calcium levels

[98,99]. Islet-specific expression of the pan-chemokine blocker

M3 abrogated inflammatory cell infiltration of the islets and com-

pletely blocked the development of diabetes in NOD mice [97],

suggesting that chemokines mediate afferent and efferent immu-

nity in T1D. Thus, broad chemokine blockade might represent a

viable strategy to interfere with islet homing of diabetogenic T cells.

Mechanistically, endothelial cross-presentation of islet antigens

enhances the strength of T-cell adhesion and works in concert

with chemokine receptors. These events account for the transition

from initial tethering and rolling to the firm adhesion via integrin

activation (Fig. 1).

Arrest of rolling or firm adhesion of T cells on endothelium
Firm adhesion of lymphocytes occurs mostly in high endothelial

venules and requires in situ activation of at least one of the three

main integrins: VLA-4, LPAM-1 and LFA-1. LFA-1(aLb2)–ICAM-1,

VLA-4(a4b1)–VCAM-4 and LPAM-1(a4b7)–MadCAM-1 adhesive

interactions are important for the development of diabetes

[100–103]. Although Hanninen et al. [38] suggested that LFA-1

is dispensable for diabetes development, a report by Barlow et al.

[104] highlighted the essential role of b2 integrins during insulitis

formation. In agreement, genetic absence of either of the LFA-1

chains b2 and aL completely prevented the development of insu-

litis and overt diabetes in NOD mice. Whereas b2-chain deficiency

completely abrogated T-cell–EC adhesion, lack of aL molecules

probably affected T-cell activation [105]. Moreover, prevention of

autoimmune diabetes in NOD mice by PPAR-gamma agonists,

thiazolidinediones, was reported to be associated with suppression

of IL-1b-induced ICAM-1 expression, leading to a reduced vulner-

ability of pancreatic b cells during the effector stage of islet

destruction [106]. Accordingly, lack of ICAM-1 expression pre-

vented diabetes by abrogating insulitis in NOD.ICAM-1�/� mice

[107].

Strategies to interfere with integrin-mediated adhesion during

T-cell migration into target tissues in the course of autoimmune

diseases have already been translated into the clinic. Natalizumab,

a monoclonal antibody to the a4 integrins that blocks binding of

a4b1 (VLA-4) to VCAM-1 on brain-infiltrating T cells and binding

of a4b7 (LPAM-1) to MadCAM-1 on gut-infiltrating T cells, has

been used successfully for the treatment of multiple sclerosis and

Crohn’s disease, respectively [108,109].

Given the restricted expression and function of integrins in

different subsets of diabetogenic T cells, ‘bispecific’ antibodies

directed to target both suspected integrin and its binding partner

might function in a cell-type-restricted way and be more selective

than the ‘monospecific’ integrin-blocking antibodies or drug

antagonists.

The other important player supporting firm adhesion of T cells

to the vascular bed is the CD44 molecule. CD44, a transmembrane

multifunctional cell adhesion protein, is the principal receptor for

hyaluronan (HA) and can be considered crucial in support of firm

adhesion of T cells to endothelium and further extravasation steps
www.drugdiscoverytoday.com 535
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[110]. CD44 has a crucial role in a variety of cellular behaviors

including adhesion, migration, invasion and survival [111].

Through its cytoplasmic domain, CD44 interacts with the ezrin,

radixin and moesin proteins; members of the Rho-family GTPases

and their exchange factors; and adaptor molecules that link CD44

to the actin cytoskeleton and promote CD44-induced cytoskeletal

rearrangements [112]. CD44 ligand, HA (a nonsulfated linear

glycosaminoglycan) is abundantly present in the ECM and on

the surface of ECs and, together with its fragments, is promigratory

[112,113]. HA synthesis can be induced by proinflammatory sti-

muli such as TNFa, IL-1b, IL-15 and Lipopolysaccharide (LPS),

mostly on ECs derived from microvascular, but not large, vessel

sources, consistent with the dominant role of microcapillaries in

leukocyte trafficking [114,115]. An increase in surface levels and

substrate-binding affinity of CD44 is a well-known consequence of

T-cell antigenic stimulation [116] and is considered to reflect

activity of autoimmune disease [114,117]. The activated form of

CD44 supported rolling and adhesive interactions on HA sub-

strates both in vitro and in vivo [118–120]. CD44–HA interactions

are required for the extravasation of a wide variety of pathogenic T

cells because CD44-mediated lymphocyte migration has been

prominently associated with human arthritis, collagen-induced

murine arthritis and mouse model of multiple sclerosis

[114,117,121–123]. Most importantly, targeting CD44 with neu-

tralizing antibodies, as well as pretreatment of NOD mice with

hyaluronidase, induced resistance to T1D in the adoptive transfer

model and CD44 neutralization also protected NOD mice from the

development of spontaneous T1D [124].

In summary, several potentially beneficial approaches that

involve interfering with firm adhesion of autoreactive T cells

can be suggested and tested in the corresponding experimental

settings. They include ‘bispecific’ b2 integrin–ICAM-1 monoclonal

antibodies and CD44-neutralizing agents, as well as HA-modifying

enzymes.

Diapedesis
The last step in the autoreactive T cell’s journey from the blood-

stream into the islets of langerhans is termed diapedesis, or trans-

migration. Mechanistically, it is the passage of T cells through the

capillary walls and underlying basement membrane into the islet

tissue. Besides well-documented integrin–CAM involvement, this

process depends first on rearrangement of lymphocyte’s cytoske-

leton, coordinated by GTPases RAP1 and RhoA and their multiple

downstream effectors [52,55], and second on a series of proteolytic

events promoting leukocyte motility over and across endothelial

barriers. Several proteases, and in particular MMPs, are upregulated

during transendothelial migration. Localized proteolysis by

migrating leukocytes can expose cryptic ECM ligands, modulate

chemokine-binding specificity and release ECM-stored chemo-

kines and inflammatory cytokines involved in leukocyte locomo-

tion and retention [125].
536 www.drugdiscoverytoday.com
T cells express several individual MMPs, including a membrane-

tethered MT1-MMP enzyme [26,126–129]. MT1-MMP is distin-

guished from soluble MMPs by a C-terminal transmembrane

domain and a cytoplasmic tail [130]. MT1-MMP is synthesized

as a latent zymogen and requires proteolytic processing for activa-

tion. Once activated, MT1-MMP can be inhibited by its natural

inhibitors, tissue inhibitors of metalloproteinases (TIMPs), with

TIMP-2 being the most potent one [130]. Recent reports indicate

that T-cell MT1-MMP becomes active after the firm adhesion of T

cells and show that the proteolysis of CD44, integrins, transglu-

taminase, LRP, E-cadherin and related adhesion-signaling cellular

receptors is the important function of MT1-MMP [131–134]. Dur-

ing cell migration, MT1-MMP forms a complex with CD44 via the

hemopexin domain [111,135,136]; in this complex, CD44 is a

direct substrate of MT1-MMP for shedding [137].

MT1-MMP is the major cell-surface-associated proteinase that

contributes to the shedding of CD44 in the adherent autoimmune

IS-CD8+ T cells [128,129,138]. MT1-MMP becomes active only in

adherent diabetogenic T cells [12,26,128,129]. Active MT1-MMP

zymogen cleaves T-cell CD44, releasing its extracellular domain

from IS-CD8+ T-cell surfaces, thus rendering the CD44 cell receptor

inactive [12,26,128,129]. MT1-MMP proteolysis of CD44 seems to

control the severity of the diabetic disease and mediates the

transition of T-cell adhesion on the endothelium to transendothe-

lial migration, which results in T-cell homing into the pancreatic

islets. TIMP-2, but not TIMP-1 (a poor inhibitor of MT1-MMP), is

shown to efficiently block CD44 shedding in T cells

[12,26,128,129]. Moreover, inhibition of MT1-MMP proteolysis

of CD44 by hydroxamate inhibitor extended adhesion of IS-CD8+

T cells to the vascular endothelium, impeded their intra-islet

homing efficiency and significantly delayed onset of diabetes

transferred by either IS-CD8+ T cells or total diabetogenic spleno-

cyte population [12,26,128,129]. Similarly, TIMP-2, but not TIMP-

1, decreased T-cell transmigration and preserved insulin produc-

tion in a T1D organ culture model [139].

We suggest that in addition to interference with islet homing of

diabetogenic T cells, MT1-MMP inhibition is likely to block MT1-

MMP-driven proteolysis of basement membrane laminin and

rescue laminin-stimulated b1 integrin signaling in b cells and,

thus, might also contribute to b-cell survival.

In summary, most recent data convincingly demonstrated that

the prolonged pharmacological inhibition of MT1-MMP-depen-

dent CD44 shedding resulted in a therapeutic effect in sponta-

neously diabetic NOD mice. More specifically, it was shown that

using the MMP inhibitor AG3340, T-cell intra-islet transmigra-

tion could be blocked, resulting in partial restoration of b-cell

function, increased insulin production and alleviation of the

severity of T1D in acutely diabetic NOD mice [12]. These results

indicate that MMP inhibitors might provide a meaningful tool to

explore the effects on intra-islet homing of autoimmune T cells in

T1D patients.
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