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Current treatments for psychiatric disorders were developed with the aim of providing symptomatic

relief rather than reversing underlying abnormalities in neuroplasticity or neurodevelopment that

might contribute to psychiatric disorders. This review considers the possibility that psychiatric

treatments might be developed that target neuroplasticity deficits or that manipulate neuroplasticity in

novel ways. These treatments might not provide direct symptomatic relief. However, they might

complement or enhance current pharmacotherapies and psychotherapies aimed at the prevention and

treatment of psychiatric disorders. In considering neuroplasticity as a target for the treatment of

psychiatric disorders, we build on exciting new findings in the areas of anxiety disorders, mood

disorders, and schizophrenia.
Neuroplasticity is at the core of all treatments for psychiatric

disorders because symptom reduction is presumed to emerge

from a change in the function of neural networks. However, a

number of recent reviews indicate that psychiatric disorders are,

themselves, disorders of neuroplasticity [1–4], suggesting that

the efficacy of current treatments may be limited by neuroplas-

ticity abnormalities. This review will consider briefly the

hypothesis that new treatments might be developed to enhance

neuroplasticity [5]. Medications that enhance neuroplasticity

could increase the rapidity of onset or the extent of clinical

improvement and mitigate the need for hospitalization in some

cases.

This review will highlight a number of examples that illus-

trate how neuroplasticity might be productively targeted as a

strategy for enhancing the treatment of psychiatric disorders. It

will begin by considering the use of drugs that enhance the
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stimulation of the glycineB coagonist site of N-methyl-D-aspar-

tate (NMDA) glutamate receptors to enhance experience-depen-

dent forms of neuroplasticity, as might be associated with

extinction of maladaptive fear in patients with anxiety

disorders. The implications of the success of this approach

for the remediation of cognitive impairments associated with

schizophrenia will then be discussed. This review will then

present evidence that reductions in cellular resilience and neu-

roplasticity contribute to mood and stress-related disorders and

that these neuroplasticity deficits might be addressed by raising

the levels of trophic factors and enhancing related signal

transduction mechanisms. Finally, this review will discuss

clinical treatments modeled after two well-studied preclinical

paradigms for manipulating neuroplasticity, sensitization to the

effects of D1 agonists [6] and long-term depression (LTD) [7].

Together, these examples highlight a growing number of novel

treatments for psychiatric disorders that are emerging from

the effort to design treatments targeting or encompassing

neuroplasticity.
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Combining a generalized increase in NMDA
receptor-dependent neuroplasticity with circuit-specific
experience-dependent neuroplasticity: the examples of
fear extinction for anxiety disorders and cognitive
remediation for schizophrenia
Cognitive–behavioral therapy incorporating graded, prolonged

exposure to feared stimuli is among the most promising treat-

ments for anxiety disorders [8]. Exposure interventions include in

vivo exposure (direct confrontation of feared and avoided situa-

tions or activities), imaginal exposure (prolonged and detailed

imagining or remembering of feared and avoided thoughts),

and interoceptive exposure (exercises designed to elicit feared phy-

sical sensations). The purported mechanism of exposure is extinc-

tion, in which repeated presentations of a conditioned stimulus

(CS), outside the presence of an unconditioned stimulus (US),

eventually leads to reductions in the conditioned response (CR).

Extinction does not imply that the organism forgets the original

CS–US association; rather, it is thought to represent the learning of

new associations (e.g. the CS becomes associated with stimuli

other than the US) that eventually inhibits the original association

[9]. However, as new adaptive associations are consolidated and

reinforced, the reconsolidation of Classical (Pavlovian) fear con-

ditioning, extinction, and reconsolidation are all NMDA receptor-

dependent forms of neuroplasticity involving glutamatergic

inputs into the basolateral amygdala [10–13]. Drugs that facilitate

NMDA receptor function via glycine site have not been shown to

have potent direct anxiolytic effects in animals or humans [14–18].

However, drugs that facilitate NMDA receptor function might

promote a variety of NMDA receptor-dependent forms of neuro-

plasticity, including extinction [19]. The addition of D-cycloserine

(DCS) to exposure therapy for anxiety disorders provides the

clearest example of the capacity of a medication that increases

neuroplasticity diffusely in the brain to enhance the efficacy of a

behavioral therapy that produces neuroadaptations in particular

circuits. DCS is a partial agonist of the glycineB coagonist site of

NMDA receptors with relatively more agonist or antagonist effects

at NMDA receptor subtypes [20–22]. When surrounding glycine

levels are low, DCS facilitates NMDA receptor function. However,

when glycine levels are sufficient to saturate glycineB sites, DCS

may reduce NMDA receptor function [23–25]. Therefore, DCS may

improve the efficacy of exposure-based psychotherapies by enhan-

cing NMDA receptor functioning, thereby increasing neuroplas-

ticity, or by reducing NMDA receptor function and interfering

with the (re)consolidation of fear memories. Both processes are

thought to facilitate fear extinction [5,26,27]. DCS promoted the

extinction of fear conditioning in animals, regardless of whether it

was present during extinction sessions [28] or immediately after

extinction training [29]. These data suggest that DCS facilitates

extinction by influencing the consolidation of new learning. In

the first study of DCS augmentation of exposure therapy in

humans [18], acrophobic patients receiving DCS appeared to

benefit more from virtual reality exposure therapy than did

patients receiving placebo. These results have now been replicated

and extended using DCS in combination with exposure therapy

for patients with social anxiety disorder [30,31], panic disorder

[32], and obsessive–compulsive disorder [33,34].

Figure 1 presents the results of a recent quantitative review of 15

placebo-controlled studies (N = 632, 30 independent samples; 5
animal studies, 10 human studies [35]) of DCS augmentation of

extinction training/exposure therapy. At post-treatment, DCS

augmentation was associated with a significant and large effect,

indicating that DCS reliably augments the effects of fear extinc-

tion/exposure therapy. Animal studies showed a significantly

greater effect than did human studies (perhaps not surprising,

given the greater experimental control over genetic variation and

extraneous variables in animal studies). A secondary analysis

revealed that human nonclinical studies showed no significant

DCS effect, while human clinical studies showed that DCS pro-

duced significant effects with a moderate effect size. A similar

pattern was seen at follow-up, suggesting that the effects of DCS

augmentation do not disappear upon treatment discontinuation,

a potential improvement over other pharmacotherapy augmenta-

tion strategies that may actually increase the risk of relapse after

discontinuation [36,37].

Examination of moderator variables found no evidence of a

DCS dose–response relationship across studies. However, the

timing of the DCS dose significantly predicted effect size, with

the greatest effects evident among studies in which DCS was

administered either immediately before or after exposure, con-

sistent with the preclinical studies. Smaller DCS effects were also

seen for those studies in which the combination of DCS and

exposure occurred many times. This decrease in efficacy may

reflect the development of tolerance to DCS [38] or the high level

of efficacy of repeated exposures in the patients studied to date,

that is, a ‘floor effect’ that might reduce the ability to detect the

effects of DCS.

Thus, the studies with DCS provide initial support for the

hypothesis that a drug that enhanced neuroplasticity by facilitat-

ing the activation of NMDA glutamate receptors might promote

the efficacy of extinction-based CBT. Future studies with full

agonists of the glycineB site of the NMDA receptor complex

(glycine, D-serine, D-alanine) as well as glycine or D-serine trans-

porter antagonists will help to better evaluate this treatment

modality.

In contrast to the glycine-related agents, b-receptor blockade

might be a strategy to preferentially disrupt the reconsolidation of

fear-related learning. Noradrenergic systems play a number of roles

in the neurobiology of memory in animals and humans [39,40].

Recent animal data suggest that b-receptor blockade preferentially

disrupts the reconsolidation of fear learning relative to the initial

consolidation of learning [41,42]. This finding may be consistent

with the ability of b-receptor blockade to reduce reconsolidation of

fear learning associated with post-traumatic stress disorder (PTSD)

[43,44], while leaving initial fear learning intact [45]. By contrast,

preliminary evidence suggests that propranolol may not be effec-

tive for the prevention of PTSD [46], despite some initial promise

of this strategy [47].

Drugs, like DCS, that promote neuroplasticity via enhance-

ment of NMDA receptor function might enhance the efficacy

of cognitive and behavioral therapies for many psychiatric dis-

orders. It is intriguing to consider the possibility that the effi-

cacy of glycine-related treatments substances for schizophrenia

might follow a paradigm similar to the anxiety disorders, that is,

they may promote neuroplasticity rather than directly suppres-

sing symptoms and cognitive deficits associated with schizo-

phrenia. A large number of studies that have suggested that
www.drugdiscoverytoday.com 691
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FIGURE 1

Effect size (Cohen’s d) of controlled trials of D-cycloserine (DCS) vs. placebo (PBO). Note: Adapted from [35].
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glycine-related substances (glycine, DCS, D-serine, D-alanine, or

sarcosine) modestly improve the efficacy of antipsychotic treat-

ment when added to drugs other than clozapine, a drug that has

intrinsic glycine transporter activity [16,48–50]. However, there

are a number of negative trials, including the largest study of

this mechanism [51]. There may be many reasons for the nega-

tive findings. One reason may be that it is not clear how glycine

should be optimally dose to produce clinical benefit, that is, we

have only limited information about the central bioavailability

of peripherally administered glycine in humans [52]. Also, on

the basis of the data with anxiety disorders [35], one might

predict that a limited number of glycine treatments would be

more effective than chronic treatment in order to minimize the

impact of tolerance to glycine effects. To date, however, all

studies of glycine treatments have employed daily or twice-daily

administration schedules for several weeks. Also, on the basis of

the anxiety studies, glycine might be predicted to augment the
692 www.drugdiscoverytoday.com
efficacy of a rehabilitative treatment while having limited effects

on its own. Cognitive remediation therapy, like fear extinction,

would seem to be relatively amenable to this strategy. Cognitive

remediation involves the repetitive activation of circuits under-

lying particular aspects of cognition in order to engage use-

dependent forms of neuroplasticity to reduce functional impair-

ments within these circuits [53–55]. Reductions in neuroplasti-

city intrinsic to schizophrenia would be predicted to constrain

the benefits of this type of treatment [3]. Currently, there are no

published studies evaluating the interactive effects of glycine-

related substances and a cognitive remediation strategy or cog-

nitive–behavioral therapy for schizophrenia. However, there are

data that might be consistent with a primary glycine effect on

neuroplasticity rather than symptom suppression in schizophre-

nia. When it works, the benefits of glycine persist for several

weeks following its termination, despite its short plasma half-

life [52,56,57].
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Restoring neuroplasticity, neurogenesis, and
gliogenesis through neurotrophic mechanisms: the
case for depression and stress-related disorders
The concept that depression could be related to decreased cellular

resiliency and impaired plasticity emerged from a series of ante-

mortem and postmortem studies of mood disorders describing

significant structural abnormalities [58–60] and histopathological

changes, including decreased neuronal and glial density and

reduced glial cell numbers [61–64] in multiple brain regions.

Parallel findings demonstrated that prolonged stress accelerated

the age related decreases in the number of hippocampal neurons

in rodents [65] and resulted in changes in dendritic branching in

hippocampus, amygdala and prefrontal cortex (PFC) [66–68].

More recent data show that these stress-induced morphological

changes have functional correlates, resulting in diminished

responses to apically targeted excitatory inputs [69], and deficits

in attentional control that are commonly associated with stress-

related mental illnesses [70]. Additional studies provide strong

evidence of stress-related decreases in the rates of cell proliferation

and survival [71,72]. Of special interest to the field of drug devel-

opment, it was noted that many established antidepressant treat-

ments opposed stress effects on dendritic atrophy [73] and glial cell

loss [74], as well as cell proliferation and survival [75–78]. The idea

that antidepressant-induced effects on cell proliferation mediated

the beneficial cognitive and behavioral effects of the drug was

bolstered by evidence that hippocampal neurogenesis was

required for the expression of the behavioral effects of antidepres-

sants [79].

A neurotrophic hypothesis suggested that the opposing effects

of stress and antidepressant drugs are mediated by modulation of

kinase activity, resulting in changes in cyclic AMP (cAMP) levels

and altered cAMP response element binding protein (CREB) regu-

lated brain-derived neurotrophic factor (BDNF) gene expression

[80,81]. This hypothesis is supported by postmortem human

studies of the hippocampus and PFC, and serum studies of

depressed patients demonstrating decreased levels of BDNF mRNA

and protein in non-medicated depressed patients, but either

increased or similar BDNF levels in patients taking antidepressant

drugs [82–85]. Although much attention remains directed on the

specific role of BDNF in the hippocampus and frontal cortex, there

is new evidence of the involvement of several additional neuro-

trophic factors including fibroblast growth factor (FGF) [86], insu-

lin-like growth factor (IGF-1) [87], and vasoendothelial growth

factor (VEGF) [88]. In addition, there are regional differences with

regard to the effects of stress and antidepressants on neurotrophic

factor regulation [89].

Beyond the neurotrophins, other mechanisms crucial to the

regulation of plasticity may contribute to the pathophysiology of

mood disorders and to antidepressant efficacy. For example, there is

growing evidence of stress and antidepressant drugs on chromatin

remodeling [90], with recent evidence suggesting that early epige-

netic processes produce long-standing effects on neuroplasticity

and cellular resiliency that may persist into adulthood. Further-

more, the ability of drugs such as valproic acid that modulate

histone deacetylase (HDAC) proteins [91,92] and enhance long-

term memory for both acquisition and extinction may provide the

mechanism of action to some mood stabilizing medications, and

suggest a role for the drugs as adjuncts to behavior therapy [93,94].
Recent studies now suggest that activity-dependent plasticity

may be impaired in depressed patients and that antidepressant

drugs may reverse or attenuate this deficit [95,96]. For example,

stimulus induced plasticity is impaired in the visual system of

depressed individuals and that chronic administration of sertra-

line to healthy subjects increased the amplitude and plasticity of

the evoked potentials [97]. In addition, fluoxetine administration

enhances the plasticity of ocular dominance columns in adult rats

[98]. Together these studies provide strong evidence that antide-

pressant medications promote activity-dependent plasticity in

visual cortex, and raise the possibility that similar plasticizing

effects can be seen in brain circuits more closely related to mood

regulation and cognition. Future studies might target these

mechanisms more directly via actions on glutamate and GABA

receptors [99,100].

The notion that antidepressants may work by increasing activ-

ity-dependent plasticity parallels the prior studies of DCS in anxi-

ety disorders. In this case, again, providing the medication alone

may not be sufficient, or at least not the optimal strategy, for

reversing the pathophysiological state of depression. Selective

activation of specific brain circuits and synapses may synergize

with drug therapies to reinforce and strengthen desirable beha-

viors and cognitive schemata that are useful in reversing and

preventing depressive episodes. This may contribute to the inter-

esting finding demonstrating that the combined use of an anti-

depressant medication with cognitive–behavioral therapy for

chronic depression was much more effective than either treatment

alone [101]. In an attempt to explore this hypothesis, a recent pilot

study found that CBT augmentation of ECT might enhance the

antidepressant effectiveness of the treatment and delay the time to

relapse [102]. Obviously, this area of investigation now requires

much more rigorous studies before any firm conclusions can be

made related to clinical practice. Also, it would be interesting to

determine whether a drug that enhances neuroplasticity generally,

like DCS, promotes the clinical efficacy of traditional antidepres-

sant treatments.

Using a sensitizing administration regimen to achieve
lasting benefits from dopamine D1 receptor agonists in
schizophrenia
It would be elegant to design a treatment regimen that turned a

pathophysiologic process into a treatment mechanism and, in so

doing, solved an obstacle in drug development, the problem of the

development of tolerance to agonists. There has been substantial

interest in the potential value of dopamine D1 receptor agonists

for treating cognitive impairments in schizophrenia [103]. The

benefits of D1 receptor agonist treatment might, however, be

limited by the emergence of tolerance [104–106]. Thus, there

has been interest in strategies that might circumvent this limita-

tion.

One potential strategy emerged from studies of the sensitization

to the psychotigenic effects of psychostimulants [107]. Although

there is recent evidence of psychostimulant sensitization in

humans [108], it has been demonstrated more clearly and robustly

in animals. In rodents, psychostimulant administration produces

glutamate release in multiple brain regions that produces an

NMDA receptor-dependent form of synaptic neuroplasticity that

contributes to the behavioral features of stimulant sensitization
www.drugdiscoverytoday.com 693



REVIEWS Drug Discovery Today � Volume 14, Numbers 13/14 � July 2009

R
eview

s
�P

O
S
T
S
C
R
E
E
N

[109–111]. Amphetamine sensitization in the nonhuman primate

induces a disorder characterized by long-lasting alterations in

behavior, profound working memory impairments, and a dete-

rioration in the integrity of prefrontal neuronal circuitry [112–

114].

The process of sensitization, however, also might be exploited

for the treatment of cognitive impairments associated with schi-

zophrenia [115]. Thus, long-term administration of neuroleptics

downregulates D1 receptor function, leading to working memory

deficits that can be reversed by repeated intermittent treatment

with a full D1 agonist [6]. In this case primates received multiple

sessions involving the administration of very low doses D1 ago-

nists that were interleaved with washouts. Under these conditions

primates began to respond to doses that were previously too low to

produce behavioral effects. They also showed progressive improve-

ments in working memory that persisted long after cessation of

treatment. Together, these findings were suggestive of an under-

lying process of sensitization. This hypothesis was tested in

another dopamine/D1 deficient state, namely natural aging,

and it was found that this same sensitizing regime of D1 agonist

treatment profoundly enhanced working memory performance in

elderly, but not young-adult, nonhuman primates and again this

benefit persisted long after treatment [116]. Thus, by administer-

ing low doses of D1 receptor agonists intermittently, it is con-

ceivable that one could surmount the problem of tolerance

development to these agents, producing long-lasting or even

irreversible improvement of some of the cognitive impairments

associated with schizophrenia.

Delivering low frequency transcranial magnetic
stimulation to depotentiate cortical synapses: treating
antipsychotic-resistant auditory hallucinations
In approximately 25% of patients diagnosed with schizophrenia,

auditory hallucinations (AHs) respond poorly or not at all to

currently available antipsychotic medication [117]. One impor-

tant feature of AHs is that they generally are experienced as spoken

speech with discernable loudness, timbre and other ‘percept-like’

features. These characteristics suggest direct involvement of

speech perception neurocircuitry.

An early O-15 positron emission tomography study found that

activation in left temporoparietal regions accompanied AHs [118].

These brain regions are adjacent to the Wernicke’s area and active

during speech perception [119]. Numerous studies have found that

1-Hz repetitive transcranial magnetic stimulation (1-Hz rTMS)

reduces cortical excitability [120–125]. These effects appear ana-

logous to long-term depression (LTD) elicited by 1-Hz direct

electrical stimulation of gray matter in animal studies, which

can endure for many weeks [7,126]. We consequently predicted

that ‘suppressive’ 1-Hz rTMS delivered to the temporoparietal

cortex might reduce AHs. Clinical trials comparing this interven-

tion strategy with sham stimulation in patients experiencing AHs

have been undertaken at Yale [127,128] and elsewhere. A meta-

analysis considering 10 sham-controlled double-masked studies

found robust evidence of efficacy relative to sham stimulation

based on a combined total N of 212 (effect size = 0.76 95% CI 0.36–

1.17 [129]). Most recently, functional magnetic resonance imaging

(fMRI) maps of abnormal activation and functional connectivity

have been used to position rTMS in patients with especially severe
694 www.drugdiscoverytoday.com
AHs [130]. Delivering rTMS to temporoparietal sites in Wernicke’s

area and the adjacent supramarginal gyrus was accompanied by a

greater rate of AH improvement compared to sham stimulation.

Repetitive TMS delivered to other sites did not consistently

improve AHs. These findings suggest that targeted brain stimula-

tion designed to induce neuroplastic alterations in neurocircuitry

responsible for positive symptoms can produce clinical improve-

ment in patients with schizophrenia.

Commentary
Traditional treatments for psychiatric disorders emerged from the

convergence of happy accident and acute clinical observation,

that is, when administration of a substance suppressed symptoms.

However, the treatment strategies reviewed above diverge from

this approach, emerging from mechanistic foundations in basic

research that may translate to novel treatments. As a result, this

review identified some promising new treatment approaches as

well as emerging conceptual approaches to medications develop-

ment for psychiatry.

A treatment that works by increasing neuroplasticity may
require combination with another treatment, perhaps a
cognitive–behavioral therapy, to exhibit efficacy
Traditional medication development strategies assume that med-

ications, by themselves, produce the necessary adaptations in

synaptic function to demonstrate efficacy in animal models. How-

ever, a drug that increases neuroplasticity might require testing in

animal models involving behavioral change, for example extinc-

tion, to exhibit efficacy. Similarly, these drugs may only show

clinical efficacy in humans in combination with these cognitive or

behavioral manipulations, as was the case for glycine-related

treatments for anxiety disorders and perhaps schizophrenia.

Cellular resilience, that is, neuronal and glial structural integrity
may be targeted by treatments for psychiatric disorders
Treatments for psychiatric disorders have traditionally used beha-

vioral rather than biological endpoints. However, strategies invol-

ving raising neurotrophin levels to restore synaptic connectivity or

to stimulate neurogenesis might have structural endpoints that

precede behavioral change.

Agonist administration schedules may be designed to produce
sensitization rather than tolerance
The model of D1 receptor agonist sensitization suggests that doses

that are too low to produce initial behavioral effects might become

effective doses with repeated but intermittent administration.

Equally intriguing is the possibility that sensitization strategies

might produce long-lasting or even irreversible improvement

mitigating the need for further drug administration.

TMS, deep brain stimulation [131] and other focal
neurostimulation treatments may be administered to shape the
function of cortical networks, that is, to potentiate or
depotentiate synaptic function
TMS may serve to produce specific forms, for example resembling

LTD or LTP, in particular circuits. In producing a specific form of

use-dependent neuroplasticity in a circumscribed circuitry, TMS

shares some features of cognitive and behavioral therapy. From
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this perspective, future research might explore ways that TMS

might be combined with drugs that affect neuroplasticity diffusely

in the brain, such as the glycine-related agents.

In considering neuroplasticity as a treatment, many questions

emerge. For example, one might expect that newstrategieswould be

needed to identify drugs that would act to modulate neuroplasticity

in therapeutic ways, but might be behaviorally inactive by them-

selves.Majorchallenges for thisfieldof research maybeeconomicor

regulatory rather than scientific. For example, would a pharmaco-

logic treatment for a psychiatric disorder that involved the admin-

istration of a limited number of doses be sufficiently profitable to

justify the investment of the pharmaceutical industry? If not, what

other type of company, research foundation, governmental orga-

nization, or academic institution would have the capacity to test

these drugs? Also, how does one develop and obtain FDA approval

for a medication that must be administered in combination with a

specific form of cognitive behavioral therapy? In particular, how

important will it be to validate and standardize the psychothera-

peutic component of the medication–therapy combination? These

and other challenges will accompany the enormous apparent

opportunities associated with the development of agents that

attempt to facilitate the treatment of psychiatric disorders through

the modulation of neuroplasticity.
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