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The approach of drug repositioning is an important

consideration for any life science organization. By using

knowledge-driven systems in the form of large data

stores and applying rational in silico experimental

design, researchers have generated workflows that

are capable of identifying novel uses for drugs that span

the therapeutic pipeline and beyond. Both broadly

accessible data, such as Medline and Chembank, in

addition to internal proprietary data of the company

in the form of gene chip experiments, compound

screening databases, and clinical trial information play

an important role in the success of drug repositioning.

By reviewing how current and past successes have been

accomplished along with the data used, important

stratagems emerge that can provide a wealth of ideas

for novel workflows, as well as provide a guide for

future discoveries.
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Introduction
however their formats can often be an important considera-

tion. For example, data housed in HTML or XML format

As human physiology is comprised of millions of protein–

protein interactions it can often be difficult scientifically to

predict de novo what single or multiple effects a therapeutic

molecule may have on disease manifestation or progression.

However, either through in-depth scientific review or simple

serendipity, the art of drug repositioning has proven itself
useful by delivering treatments to alternate indications from

those for which the original drug was developed [1–4]. In

addressing the declining drug approval rates within the

industry, it has been suggested that strategies for reposition-

ing can actually yield more preclinical compounds than

similar internal R&D investments [4]. Given this observation

and the availability of large data sets to researchers; it is

critical that that approaches be in place for investigators to

make use of such information.

Through proper experimental design and combining dis-

parate biological, chemical, and clinical data sets that reside

in an organization’s knowledge warehouse; novel and pre-

viously unknown relationships can be found [5–8]. These

findings can lead to deeper insights in areas such as disease

biology, target/compound selection, and potential toxicities

(Fig. 1). There is often no restriction on the type of data used;

would require different approaches for mining when com-

pared to data in a relational database or semantic store.

The strategies for mining such large datastores for indication

associated linkages can span vast areas of computational

science. For the purposes of this review, we will highlight

mainstream approaches that have proven themselves useful

from the standpoint of delivering quality repositioning oppor-

tunities. Such approaches can be broadly broken down into
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Figure 1. Data sources used in drug repositioning. Computational researchers have access to a wide range of disparate sources of information from across

the life sciences. Historically, biological, chemical and clinical data have been often siloed within the drug discovery setting. A critical area in the success of

drug repositioning efforts in the integration and application of these diverse data sets, along with rational scientific design. By joining these data domains in a

directed fashion, researchers can generate hypotheses for repositioning opportunities.
three categories: those involving biological data (bioinfor-

matics), chemical data (cheminformatics), and text analytics.

Biological data mining

In the generation and capture of biological data, Table 1A lists

popular data/information types and associated mining

approaches that have revealed repositioning opportunities

in the past. Many organizations generate such information

either by singleton experiments or through broad focus

initiatives. The structure for holding such information can

range from simple spreadsheets to advanced semantic data

stores. Those companies who are well-positioned to store,

process, and display such data to computationally focused

researchers will be best able to capitalize on repositioning of

both pre-clinical programs, and those under clinical investi-

gation. Even companies without any internally generated

data can obtain public source information (Table 1B) and

apply data mining strategies to obtain novel linkages and

secure intellectual property in this area [2,9].
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For those organizations that generate their own biologi-

cally derived data to be used for repositioning studies, their

approaches can be broken down along disease lines. General-

ist organizations do not direct their efforts toward a particular

disease; rather, they establish panels of disease-relevant mod-

els, and then screen the compounds to be repositioned

broadly. Specialists rely on their expertise within a particular

disease area to screen relatively larger numbers of compounds

against a focused set of diseases. For example, Melior Dis-

covery, generalist in its approach; has established a ‘high

throughput’ in vivo pharmacology platform (theraTRACE1)

comprising a proprietary multiplexed array of more than 30

in vivo models that allows for systematic identification

of novel indications for drug candidates at any stage of

development [2]. This platform covers therapeutic areas

including inflammation, immunology, diabetes and meta-

bolic syndrome, dermatology, cardiovascular, gastrointest-

inal, psychiatric, neurological and neurodegenerative

disorders. Melior stores its data in databases that allow for
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Table 1A. Examples of high-level strategies for repositioning and their corresponding mining approaches

Strategy Mining approach Example Pro Con

In vivo screening Screen compounds against disease

models and derive a phenotyping

fingerprint with heatmap visualization

MLR-1023 for

diabetes (Melior)

Non-hypothesis driven, very broad

in scope, cited 30% true positive

return

Requires investment in original

data generation

Gene expression

screening

Measure gene expression in a panel of

relevant tissues, and then perform

Bayesian statistical analysis

VVP-808 for

diabetes (Verva)

Able to provide a long list of

potential opportunities; wealth of

hypothesis generation

Additional validation of ‘hits’ is

required; potential long list for

follow-up

In vitro screening Screen compounds for cytotoxicity,

then verify approved drugs for clinical

efficacy in oncology

Digoxin for

oncology

(Platz et al.)

High-throughput in design, able to

generate several candidates for

follow-up

More directed toward single cell

activity; less likely to obtain

tissue related effects

Systematic

expert review

Review of existing literature with an

eye toward new combinations or

diseases

VT-122 for cancer-

induced systemic

inflammation (Vicus)

Minimal investment in data

generation, broad published

landscape

Reliant on published knowledge,

may require validation of

published work

In silico discovery

(data integration)

Combine disparate data sources with

disease and drug information, then

look for ‘guilt by association’

Development

of DrDKB

(Chiang and Butte)

Holistic view of disease landscape

from multiple published and

external/internal generated data

Additional validation of ‘hits’ is

required; disease data often not

available in model organisms

In silico discovery

(network based)

Develop network models of biological

and pathological conditions to

elucidate new useful compound

intervention points

Anaxomics networks Network based analysis,

opportunity to identify key proteins

nodes that play role in disease

Often limited by visualization

and ordering of complex

networks

Table 1B. Public source data of use for repositioning

Resource Data contained Use to repositioning URL

Pubmed Free-text literature abstracts Highly rich data source for published research.

Text-mining or curation may be necessary to

integrate with other data sources

http://www.ncbi.nlm.nih.gov/pubmed/

Online Mendelian Inheritance

in Man (OMIM)

Fielded free-text descriptions

of genes and genetic disorders

Useful for information about human genetic

variation and potential phenotypic consequences

http://www.ncbi.nlm.nih.gov/omim

Gene Expression Omnibus High-throughput gene

expression experimental data

and study information

Many studies are available from disease tissue

samples that can lead to hypothesis generation

http://www.ncbi.nlm.nih.gov/geo/

Mouse Genome

Informatics (MGI)

Mouse genetic information Transgenic mouse phenotypes especially can inform

researchers about the potential effects of a

therapeutic intervention

http://www.informatics.jax.org/

Kyoto Encyclopedia of Genes

and Genomes (KEGG)

Biochemical pathways A good starting point for construction of disease-

relevant networks

http://www.genome.jp/kegg/

BioCarta Biochemical pathways Along with KEGG, a good resource for the

construction of biological networks

http://www.biocarta.com/

IUPHAR Database Target and compound

information

Excellent source for biology and chemistry

information around GPCRs, on channels, and

nuclear hormone receptors

http://www.iuphar-db.org

ChEMBL Bioactive small molecules,

including 2D structures and

abstracted bioactivities

Can be used as a starting point for construction of

biospectra or probing SAR

http://www.ebi.ac.uk/chembldb/

PubChem Repository of small molecules

and biological properties

Another good resource for bioassay and compound

structure information

http://pubchem.ncbi.nlm.nih.gov/

ClinicalTrials.gov Fielded free-text information

about clinical research studies

Can provide information about existing

repositioning efforts, and drugs that might be

available for repositioning

http://clinicaltrials.gov/

SNOMED-CT Clinical descriptions of

diseases and syndromes

An effective starting point for the development of

ontologies around disease concepts for text mining

http://www.nlm.nih.gov/research/

umls/Snomed/snomed main.html
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high throughput mining and ‘phenotypic fingerprinting’

using heatmap visualization and computational analysis to

identify statistically significant changes in dosed animal

phenotypes. Coupling such broad phenotypic screening with

high throughput mining approaches; led Melior to the repo-

sitioning of MLR-1023 for treatment of type 2 diabetes

[2,4,10]. MLR-1023 was previously developed for the treat-

ment of gastric ulcers and was halted due to lack of efficacy in

a phase 2 trial for that indication [2,10]. As phenotyping led

to the discovery of a glucose lowering effect in mice, the

primary target was unknown initially and Melior scientists

later discovered that Lyn kinase was responsible for the

efficacious effect [11]. It is interesting to point out that,

had the clinical data for MLR-1023 been analyzed for addi-

tional indication effects; glucose lowering would likely have

been noted shortly after its trial in the 1980s.

Another example of linking biological data generating

platforms to streamlined data mining can be seen by work

done at Australia-based Verva. Researchers have developed a

diabetes discovery platform (Gene Expression Signature

Technology) that uses targeted gene expression measure-

ments from whole cells from a flexible panel of diabetes

relevant tissues [4,12]. Using data-driven Bayesian statistical

analysis, that is target and mechanism agnostic, within the

GES platform; Verva scientists identified VVP808 as a novel

non-PPAR insulin sensitizer [12]. VVP808, aka methazola-

mide, is a carbonic anhydrase inhibitor originally used as a

diuretic and in the treatment of glaucoma. The insulin sen-

sitizing action of VVP808 is believed to be independent of its

inhibition of carbonic anhydrase.

In addition to mining phenotypic effect databases, other

type of data, such as epidemiology information have also

been used successfully. Platz et al. have incorporated novel

biological data by coupling epidemiologic information with

an in vitro screen of commonly used therapeutic agents to

identify novel indications [13]. In contrast to other purely in

silico efforts (such as that by Chiang and Butte) this is pri-

marily an experimental method. The cytotoxicity of 3187

compounds was determined against two prostrate cancer cell

lines. Of the 70 cytotoxic compounds, 38 had regulatory

approval and thus a history of clinical use [13]. Twenty of

these were known anti-neoplastic agents, while the other 18

were not known as such. When this list of agents was used to

interrogate the clinical history of the nearly 48,000 patients

in the prospective Health Professionals Follow-up Study, it

was determined that there was an inverse risk between use of

digoxin, a compound predicted to be anti-neoplastic by the

analysis, and prostate cancer risk further strengthening the

potential of digoxin as an anti prostrate cancer drug [13].

For strictly in silico researchers, their primary way to uncover

repositioning opportunities is through new analysis and orga-

nization of existing data. For example, Chiang and Butte have

created DrDKB, a novel drug information-based research tool,
112 www.drugdiscoverytoday.com
by combining DRUGDX (from The Thomson Corporation)

pharmacopeia information, which contains both FDA-

approved uses of drugs as well as physician prescribed off-label

uses, and a subset of SNOMED-CT (Systematized Nomencla-

tureofMedicine-ClinicalTerms) todefineand limit theclinical

description of diseases and syndromes [14]. This knowledge

base was queried via ‘guilt-by-association’ to identify all dis-

ease–drug combinations. If known combinations were

excluded, 5500 pairs remained; and when looking at these

novel drug uses at clinicaltrials.gov, it was apparent that the

suggested novel uses of these drugs was 12 times more likely to

be in clinical trials than those not suggested by this analysis

[14]. However, one drawback to this method is the large

number of individual drug–disease combinations suggested,

implying that this method may best be used in combination

with an independent method for verification.

Other researchers may organize around a core disease, a core

technology, or some combination of the two. For example,

scientists at Vicus Therapeutics systematically use published

literature in combination with expert knowledge to identify

products that comprise novel pairs of generic drugs with

established safety profiles that may be of use as adjunctive

therapy for oncology [4,9]. Such an approach is also used by

scientists at Anaxomics Biotech, however it is not focused on a

single therapeutic expertise but used to develop a ‘Therapeutic

Performance Mapping System’ which consists of proprietary

patented disease and bio-pathological maps technology and

hand-curated databases [15]. Anaxomics curates protein net-

works that include all molecular entities known to be involved

in the disease of interest and create predictive models of the

network using pathway analysis tools.

Chemical data mining

The need for drug repositioning can often come after comple-

tion of a successful phase 1 clinical trial, demonstrating in vivo

safety of the candidate drug in healthy human volunteers, and

subsequent failure for the intended therapeutic indication in a

phase 2 or phase 3 trials in an appropriate patient population.

Inclusion of properly selected mechanistic biomarkers should

provide evidence that the desired mechanism of action was

sufficiently engaged to produce the desired effect. Assuming

the drug’s mechanism of action is ‘hit,’ the failure is likely due

to a misunderstanding of the role of the mechanism of action

in the disease process of interest. The understanding to effec-

tively reposition safe drug entities to appropriate indications

lies at the intersection of at least two concepts. First, any given

small molecule drug candidate interacts with many proteins

based on its properties and concentration and on the local

physiological context. Second, complex diseases emerge from

the properties of the underlying intra- and intercellular mole-

cular networks and, furthermore, these molecular networks are

modular and hierarchical [16]. Information about drug–pro-

tein interactions is often incomplete and under appreciated.
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However, bygenerating network-baseddiseaseand drugeffects

landscapes from chemistry-centric data, insights into reposi-

tioning opportunities can present themselves.

One such example of a cheminformatics directed reposi-

tioning platform can be seen in work by Fliri et al. [17]. Large

drug–protein activity databases were generated from the

interaction of thousands of known drugs and drug-like che-

mical entities against a section of the druggable proteome.

Using heatmap tools for visualization with clustering algo-

rithms – allowed for the creation of a chemical descriptor or

‘biospectra’ by which small molecules could be grouped

based on factors outside their primary structure [18]. It was

observed that small molecules fell into distinct clusters which

shared specific indication effects. For example, several com-

pounds fell into a cluster marked by those with anti-fungal

effects, even though the primary fungal protein target did not

exist on the protein panel. Near this antifungal cluster was a

cluster of anti-cancer compounds. When the authors looked

at the intersection of both clusters, they found compounds

like Taxol; a small molecule that exhibits both antifungal and

anti-cancer properties [19,20]. Based on the utility of such

analyses to identify not only repositioning opportunities, but

also group compounds for physiological effects; additional

work was performed that linked information of drug–effect

relationships which allowed mapping of drugs to physiolo-

gical processes. Critical to this was computationally linking
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tein–protein interaction (PPI) data [21]. Weaving data from

these areas together has yielded the beginnings of a systems

level understanding of drug–molecular network information

that is essential not only for drug repurposing but also for

successful initial drug purposing and placement. In this

specific case, researchers have built context (disease-tissue)

specific molecular networks based on PPI into drug–protein

and drug–effect relationships that allow inference of which

parts of the molecular network are altered by a specific drug

and which of these altered subnetworks drive the effects and

side effects of that particular drug [22]. Such workflows have

also been used to examine the biologically reasons for post-

repurposing; such as the example of nelfinavir from HIV

protease inhibition to oncology [23] (Fig. 2).

In the absence of chemical data generated in house or

obtained through vendors, purely in silico chemical

approaches have been designed. For example, Kinnings et

al. used a ‘chemical systems biology’ approach to system-

atically survey an entire proteome via selective optimization

of side activities [24]. Typically, a four step process is utilized:

(1) a 3D model of a known drug binding site is obtained; (2)

similar, secondary (or off-target) binding sites are identified

across the target proteome; (3) drug/off-target interactions

are predicted via in silico docking methods; (4) the drug is

further optimized to enhance potency drug-like properties
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considering both primary and secondary targets. Using this

approach, Kinnings et al. identified known compounds that

are hypothesized to be effective in treating multi-drug and

extensively drug resistant tuberculosis [24].

Additionally, combinations linking biological screening

data to proteins with associated chemical entities have gen-

erated hypotheses for new uses. Recently, Buckly et al. have

described a novel phenotypic screen of 1100 compounds to

identify compounds which promote myelination in zebrafish

embryos [25]. These compounds were then further character-

ized by their effect on myelin basic protein mRNA expression.

This approach identified novel COX inhibitor chemotypes

which have the potential to aid in multiple sclerosis [25].

A slight twist to the traditional approaches of repositioning

is to also look for synergistic effects of two known drugs. Using

above mentioned data, Iorio et al. have described just such an

approach [26]. Using transcriptional profiling of drug treated

cells they identified similar responses in drug effects and

mechanism of action [26]. They then analyzed this data using

network theory to uncover unreported effects of known drugs.

The network is based on 6100 expression profiles of 5 human

cell lines treated with 1309 compounds. One drug identified by

this, Fasudil, is hypothesized to be effective against several

neurodegenerative diseases [26]. As more single use patents

expire for approved drugs, one can expect that approaches to

identify known drug synergistic effects will increase.

Text based mining of published knowledge

An important consideration of mining from either the bio-

logical or chemical space is how public data and published

knowledge are processed. One field that is currently making

impacts in the area of drug discovery is that of literature-

based discovery [27], which is concerned with the identifica-

tion of overlooked or ‘hidden’ relationships between facts in

the literature. A natural way to tackle the challenge of repo-

sitioning is using text mining to enhance the process of

literature-based discovery. Text mining allows performing

high-throughput identification of key connections between

pieces of evidence scattered in the literature and enables the

generation of repositioning hypotheses around drug and

disease mechanisms. Recent examples of the utility of text

mining can be seen in the areas of identifying a drug’s

polypharmacology or side effects [28–30].

Even though very few examples of successful repositioning

have been described in the text mining literature [31,32], the

use of text mining for drug discovery has become routine in

the pharmaceutical industry as indicated by the life science

products developed by text mining companies such as

Ariadne Genomics, Temis, InforSense, and Linguamatics.

Such companies offer tools that allow the scanning of litera-

ture for potential new indications for drugs, using approaches

that range from simple co-occurrence to named entity

recognition (NER) or elaborate rule-based natural language
114 www.drugdiscoverytoday.com
processing (NLP). At the same time, companies focused on

life science applications such as Genomatix or NextBio have

made strides toward adding text mining functionality to their

products. However, streamlining and tailoring the discovery

process is still an open challenge as the complexities of the

task are hard to encapsulate in ready-made software [33].

Moreover, the need for human curation of text mining results

limits the level of precision that is acceptable since the

scarcest resource is usually the biologists’ attention. As with

other data-intensive tasks, two common challenges are data

visualization and integration of heterogeneous data sources.

In the realm of visualization, many approaches have been

proposed involving faceted representations of Medline data

[34]. Faceted representations allow matrix analysis of infor-

mation through multiple dimensions, painting the opportu-

nity landscape for target repositioning [35].

For data integration, text mining is routinely used in

conjunction with other resources to infer relationships across

different domains [35,36]. The heterogeneous datasets (Fig. 3

for sample data amenable to text mining approaches) may

cover such spaces as expression data, interaction networks,

and clinical trial databases [37], which can be assembled in a

multi-dimensional analysis that goes beyond simple associa-

tion models. The complexity is compounded by the diversity

of textual sources, which may include abstracts, full text,

patents, clinical trial reports, annotations, etc. The use of

semantic web technologies is a new route for integration of

such resources [38]. As more widespread use of such tools and

semantic approaches are seen, their directed impacts on drug

discovery and repositioning will become more prevalent.

The future of repositioning data mining

Much of the value of computational analysis for reposition-

ing comes from the integration of disparate data sources,

particularly across the boundaries of the traditional disci-

plines of clinical medicine, chemistry, biology, and toxicol-

ogy. Previously, each discipline was heavily siloed – a

chemistry database could be rigorous about compound data,

but was unlikely to mention the biological target in a mean-

ingful, structured way. As the boundaries between data blur,

it is likely that major discoveries remain as large-scale inte-

grations take place. In the more distant future, much of the

integration will not be the work of data analysts, but rather

will be part of the design of the data sources, and will be

increasingly transparent to the researcher [8].

In parallel with data integration, there will also be a grow-

ing impetus to structure the raw data sources. It is not hard to

envision that soon, provision of the data from an article in a

means that is appropriate for structured search will be as

important for influence and broad citation as the scientific

implications of the data itself. As a counteracting force to this,

measurements of reliability and providence will grow in

application to ensure that analyses based on large, integrated
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Figure 3. Text sources in literature based mining. Preexisting data in the form of published literature as well as internal organizational documents can be a

rich source of information to mine for drug-disease linkages. By linking together printed knowledge from the biological, chemical, and clinical space;

researchers can highlight data that supports repositioning hypotheses in a high throughput manner. These computational inquiries typically cover many

thousand search combinations and would be too labor intensive if done by traditional Medline exploration.
knowledge bases weigh each parcel of data appropriately. The

major areas of biology, chemistry, and clinical data each have

the ability to generate repositioning opportunities; however

it is when researchers take holistic views of the data and allow

for rational scientific design to guide in silico experimenta-

tion; that one the most potential is noted [39]. Just like

wet reagents in a refrigerator are the tools of the in vitro

investigator, so too are the different datasets that are available

to the computational researcher. Best use of experimental

design and the tools/data at hand are critical for success in

this area.

As repositioning becomes more of a consideration for

pharmaceutical research, the nature of how it is conducted

will change. Industry pressures and the need to increase

productivity are already moving companies to consider mul-

tiple diseases to therapeutic entity upstream in the discovery

process. Positioning a drug based on its mechanism of action

earlier can put companies in better positions to obtain a

foothold in new markets from the start, rather than reactively

repositioning their drugs as a back-up plan. One such exam-

ple is Novartis, who created an internal pathway analysis

section that advances drug programs based on the pathways

that they hit, rather than the diseases they are expected to

resolve [7]. This strategy has many scientific merits, as multi-

ple indications can be addressed using a single team focused
around the disease causing mechanism. As companies move

to work smarter; by making the best use of the data they

license and generate; it is envisioned that a new wave of

therapeutic products will enter the market. These products

will owe their discovery to a new drug discovery paradigm,

one in which indications are thought of from holistic, bio-

logical disease networks and not as just single targets alone.
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