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Introduction 

Indentation Testing is the technique of using a harder material commonly referred to as an indenter to 

deform a softer material. The calculated hardness (H) is the applied force (F) divided by the 

corresponding area of contact (A); H = F/A. One of the first modern forms of this technique was 

implemented by Johan August Brinell in 1900 [1]. A very heavy load, up to 30,000 N, is applied 

through a 10mm diameter hard ball onto the test material. The hardness of the material is calculated 

by measuring the diameter of the residual imprint.  

As materials increased in hardness over the years new techniques had to be developed to measure 

this property. Patented in 1914 the Rockwell Test employs smaller indenters; a diamond cone or a 

1/16 inch diameter steel ball [1]. A lower fixed load in the range of 600 N to 1,500 N is applied, the 

penetration depth measured and the corresponding area of contact calculated.   

While the aforementioned techniques are used to measure hardness of metals and ceramics, 

Durometers were developed to measure the hardness of soft polymeric materials.  Developed in the 

1920s, ‘Shore’ hardness of material is characterized through this technique using Durometers with 

different spring constants and a conical or spherical shaped indenter per ASTM D 2240 and ISO 868.  

Surface treatments of soft steels like case hardening, carburizing and carbonitriding require the 

surface mechanical properties to be measured, not the bulk. In order to limit the stress field from an 

indent to the treated surface, lower loads have to be applied through smaller indenters. The Vickers 

and Knoop hardness were developed in 1921 and 1939 respectively to meet this need. Indenters 

used in these techniques are diamond pyramids where the four sides meet at a point. Low loads of up 

to 5N are applied through these indenters and the area of the residual imprint is optically measured 

per ISO 6507-1, 2, ISO 4545-1, 2 or ASTM E384.  

Developments in deposition technology have resulted in an increase in the use of thin films and 

coatings for aesthetic, tribological as well as functional purposes. These materials are used for a wide 

range of applications like automotive clear coatings, protective metallic coatings, cutting tools, 

integrated circuits and biomaterials. While traditional indentation testing can be used to characterize 

bulk steel, micro/nano scale layers and components have brought more challenges.  

Until recently, measuring the Pencil hardness of thin films according to ISO 15184 has been 

commonplace especially in the automotive paint industry. With this method, pencils of different 

hardness are moved at a certain angle and with a certain force across the paint surface to be tested. 

The ‘pencil hardness’ of the coating is defined by two consecutive levels of pencil hardness, where 
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the softer pencil leaves only a writing track, while the harder pencil causes a tangible deformation of 

the paint coating.  

While Pencil, Vickers and Knoop hardness are still in use, the reliability and reproducibility of these 

methods are contentious for reasons mentioned later in this article. Due to stringent quality standards 

in the coating industry, it is necessary to be able to test the hardness of coatings with accuracy and 

repeatability. The hardness of thin coatings on tool bits, the viscoelasticity of protective coatings on 

optical lenses, the low friction coatings in consumer products all require precision application of 

millinewtons of force and corresponding measurements of depth in nanometers. This has led to the 

development of nanoindentation. 

 

Nanoindentation  

Instrumented indentation testing more commonly referred to as nanoindentation or in simpler terms 

depth-sensing indentation employs high-resolution instrumentation to continuously control and 

monitor the loads and displacements of an indenter as it is driven into and withdrawn from a material. 

The analysis of the measured force-displacement curves described in ISO 14577 is based on work by 

Doerner and Nix and Oliver and Pharr [2, 3]. 

Developed in the mid-1970s, nanoindentation is used to characterize a variety of mechanical 

properties of any material that can be measured in a uniaxial tension or compression test. While 

nanoindenation is most often used to measure hardness, it is also possible to calculate the modulus 

and creep using the data collected in this test. Methods using nanoindentation testers have also been 

devised for evaluating the yield stress and strain-hardening characteristic of metals, the storage and 

loss modulus in polymers, the activation energy and stress exponent for creep. The fracture 

toughness of brittle materials can be estimated as well using optical measurement of the lengths of 

cracks that have formed at the corners of hardness impressions made with sharp indenters.  

 

Construction of Testing Equipment 

Equipment used to perform nanoindentation consists of three basic components as shown in Figure 

1. 

(a) An indenter mounted onto a rigid column 

(b) An actuator for applying the force 

(c) And a sensor for measuring the indenter displacements 
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Figure 1: Schematic of typical nanoindentation tester with a force actuator and displacement sensor 

 
Small forces are generated either electromagnetically with a coil and magnet assembly or 

electrostatically using a capacitor with fixed and moving plates or with piezoelectric actuators. 

Displacements may be measured by eddy current sensors, capacitive sensors, linear variable 

differential transducers or laser interferometers.  

A diamond is typically used to make indenters because it has high hardness and elastic modulus. 

This minimizes the contribution to the measured displacement as compared to those that are made of 

other less-stiff materials like sapphire or tungsten carbide in which case the elastic displacements of 

the indenter must be accounted for. Vickers geometry indenter, a four-sided pyramid, is most 

commonly used in higher load nanoindentation tests for its durability. The Berkovich geometry 

indenter is used for measurements of a few nanometers for two reasons; they are very sharp thus 

they cause plastic deformation even at very small loads and they are easier to manufacture precisely 

as they have only three sides. Cube corner indenters are even sharper than the Berkovich causing 

higher stresses and strains. They can be used to estimate fracture toughness at relatively small 

scales. While using spherical indenters as the contact stresses small and produce only elastic 

deformation at low loads, they could be used to examine yielding and work hardening, and to 

generate the entire uniaxial stress-strain curve [4]. 

 

Hardness, Modulus and Creep 

During a nanoindentation measurement the indenter is driven into the material as shown in Figure 2, 

both elastic and plastic deformation processes occur. This produces an impression with a projected 

area Ap and surface area As of contact that depends on the shape of the indenter to a contact depth, 

hc.  
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In nanoindentation the Martens Hardness is determined from the loading portion of the load-

displacement curve and includes the materials resistance to both plastic and elastic deformation. The 

Martens Hardness can be plotted as a function the indentation depth. Martens Hardness is given by, 

ܯܪ ൌ
ܨ

௦ሺ݄ሻܣ
 

Instrumented Indentation Hardness correlates to traditional forms of hardness as it is a measure of 

the resistance to plastic deformation. Instrumented Indentation Hardness is given by 

	ூ்ܪ ൌ
	௫ܨ
	ܣ	

 

Reduced elastic modulus, Er that is indicative of the stiffness of the sample is given by  

p
r
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S
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β is a constant that depends on the geometry of the indenter. 

The reduced elastic modulus accounts for the elastic displacement that occurs in both the indenter 

and the sample. For a test material with elastic modulus EIT it can be calculated by 
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Here ν is the Poisson’s ratio for the test material, and Ei and νi are the elastic modulus and Poisson’s 

ratio of the indenter, respectively. 

Creep can be used to characterize material behavior at a constant load. Indentation Creep is defined 

as an increase in penetration depth under constant load. As shown in Figure 4 the selected final load 

is kept constant for defined time duration and the indentation depth is measured.  

Indentation Creep, CIT is calculated as 

ூ்ܥ ൌ ൬
݄ଶ െ ݄ଵ
݄ଵ

൰ . 100	% 

h1: indentation depth at the start of the creep test  

h2: indentation depth at the end of the creep test 
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