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The treatment of brain disorders is limited by the insufficiency in delivering therapeutic drugs into brain

relating to highly limited transport of compounds through blood–brain barrier (BBB). Therefore, a lot of

attempts have been made to rise above this problem using a variety of approaches. In this way, in silico

techniques try to predict the brain permeability based on a range of physicochemical descriptors

resulting from structures of the corresponding compounds. Most of the models have some

disadvantages, which preclude making conclusive decision. The major defect is ignoring the main parts

of process of permeability using only total concentrations for modeling. Moreover, the role of

transporters is underestimated in addition to neglecting the complex nature of BBB, which, collectively,

leads to uncertain results.
Introduction
The process of rational drug design using different computational

approaches has resulted in great advances in the discovery of new

drug entities. However, it seems that there is an exceptional part:

central nervous system (CNS) drugs which have greatly underde-

veloped market and although many promising drug candidates

have been discovered, most of these candidates have the lowest

chance of success [1]. In this context, the most important factor

limiting the chance ofnewentities is blood–brainbarrier (BBB) [2,3].

In fact, BBB is the defensive tool to maintain the homeostasis of

brain. This fact puts a great obstacle for drug targeting to CNS [4].

Therefore, a variety of strategies have been tried to overcome this

problem using various approaches such as combinatorial sciences,

computational methods and novel drug delivery systems. However,

owing to the complex nature of BBB in addition to the potential

interference by several concurrent physio/pathological factors,

most of these efforts have been failed to suggest a global solution.

Blood–brain barrier (BBB): structure and physiology
BBBmakes the most importantpart of the natural mechanismactive

in protection of the brain from exposure to potential hazardous

xenobiotics. It has some distinguishing features causing highly
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effective impediment for the entry of chemical compounds into

CNS [5]. The most important physical structure of BBB is the brain

capillary endothelial cells (BCECs) having some unique character-

istics such as the presence of tight junctions between the neighbor-

ing cells in addition to the lack of fenestrations precluding

paracellular transport of the solute molecules. Furthermore, very

limited vesicular transport (endocytosis) and high metabolic activ-

ity of BBB-forming cells are additional factors preventing different

molecules from being entered into the brain parenchyma [6].

Although a well-established relationship exists between lipophi-

licity of a penetrant and the efficiencyof brainpenetration, there is a

common misconception that small lipophilic molecules easily dif-

fuse theBBB. In fact, some of these small solutesdonotpenetrate the

brain as their lipid solubility may suggest. This phenomenon is due

to the presence of some active transporters in BBB, more impor-

tantly the members of ATP-binding cassette (ABC) superfamily of

transporters, which play crucial roles in active influx/efflux of the

drugs regardless the concentration gradient across BBB [7]. It was

proved that the BBB contains several ABC transporters, which expel

a multiplicity of drugs from the CNS, like P-glycoprotein (P-gp),

multidrug resistance protein (MRP) and breast cancer resistance

protein (BCRP) [7]. Some natural transport systems are presented

in the surface of BBBwhich are intended inherently for the transport

of some especial large polar compounds into brain. In this manner,
ee front matter � 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2009.07.009
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FIGURE 1

A schematic diagram of BBB: there are several mechanisms which are interfering in the permeability of compounds through BBB. (a) Passive diffusion is the most

common role by which most small lipophilic compounds penetrate through BBB. (b) Carrier-mediated transport which usually happened for small hydrophilic

compounds (LAT1: Large neutral Amino acids Transporter 1; GLUT1: Glucose transproter1). (c) Receptor-mediated transport which is generally taken place for large
hydrophilic compounds like peptides andprotein andhas considerable role in the transport of biopharmaceuticals (TfR: Transferrin Receptor; LPR: LDL-relatedprotein

receptor). (d)Absorptive-mediated transcytosis is a relatively nonspecificmechanism for positively charged peptides. (e) Active efflux transport is an antiport system
which attenuates the CNS concentration of many drugs by active efflux of them against concentration gradient from brain into blood (P-gp: P-glycoprotein; MRP:

Multidrug Resistance Protein; BCRP: Breast Cancer Resistance Protein).
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they can also work as pseudotransporters via carrier-mediated trans-

cytosis for small molecules and receptor-mediated transcytosis for

large biopharmaceuticals [1,7]. For instance, some transporters of

nutrient such as glucose transporter (GLUT1) or large neutral amino

acids (LAT1) have been used as transporter of some drugs and

therefore enhance their uptake into brain. Moreover, definite

large-molecule peptides or proteins undergo transport from brain

to blood via receptor-mediated transcytosis across the BBB. In this

way, the most widely used transporters for the delivery of large

therapeutics compounds are transferrin receptor (TfR), LDL-related

protein receptor (LPR) and insulin receptor [7,8]. A schematic dia-

gram of BBB including the main transporters is shown in Fig. 1.

Brain drug targeting: computational background
In silico methods for the evaluation of blood–brain partitioning of

drugs endeavor to predict the brain permeability based on a variety

of physiochemical descriptors resulting from the chemical struc-

tures of corresponding compounds [9]. Earlier studies were con-

centrated on small molecules and the linear relationships between

BBB permeability and lipid-to-water partition coefficient in var-
ious solvent systems. Conversely, during the past decade, pro-

gresses occurred in computational tools along with the

development of efficient modeling algorithms have associated

with the routine development of more complicated models.

Furthermore, in recent times, it has become possible to calculate

the permeability of large molecules.

One of the most recent debates in this field is regarding which

parameter(s) can be used as to classify compounds as having ‘good’

or ‘poor’ CNS distribution. In this way, from the very early time of in

silico attempts, log BB was calculated by the following equation [9]:

log BB ¼ log
Cbrain

Cblood
(1)

In which it is a measure of the extent of partitioning into brain but

not necessarily at steady state. This parameter is similar to Kp,brain,

being defined as [10]:

Kp;brain ¼
AUCtot;brain

AUCtot;blood
(2)

However, some experts believe that log BB or Kp,brain does not

actually describe BBB permeability and in fact ‘Whole brain/blood
www.drugdiscoverytoday.com 1031
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TABLE 1

Summary of models using conventional in silico methods

Data Size Experimental parameter In silico method Used descriptors Statistical performance Ref

1 Levin 27 Log Pc LR Log P r = 0.91 [16]

2 Young 20 Log BB MLR Dlog P r = 0.831 [17]

3 Abraham et al. 57 Log BB MLR Solvation parameters r = 0.952 [18]

148 Log BB MLR Solvation parameters r = 0.843 [19]

30 Log PS MLR Solvation parameters r = 0.87 [24]

4 Luco 58 Log BB PLS Topological indices r = 0.922 q = 0.867 [20]

5 Norinder et al. 45 Log BB PLS Polar surface area R2 = 0.720 Q2 = 0.707 [23]

70 Log BB PLS Polar surface area R2 = 0.756 Q2 = 0.746

6 Liu et al. 23 Log PS MLR TPSA, log D R2 = 0.74 [25]

11 Log PS MLR Solvation parameters R2 = 0.61

7 Bendels et al. 77 Log BB PLS Different physiochemical parameters R2 = 0.78 [26]
37 Log CSFPR PLS Different physiochemical parameters R2 = 0.75

8 Wan et al. 108 fu LR Log P R2P ¼ 0:756 [12]

MLR A variety of structural descriptors R2P ¼ 0:744

PLS A variety of structural descriptors R2P ¼ 0:794
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partitioning reflects nothing but an inert partitioning process of drug into

lipid material’ [11] because these parameters are highly influenced

by the relative binding affinity of compounds for protein and lipid

contents of both sides [10]. Therefore, in recent years, some other

parameters are introduced as indicator of BBB permeability. On the

basis of the ‘unbound drug hypothesis’, it is speculated that it is the

unbound drug that exerts the physiological effect [10,12]. So, it is

believed that parameters that were calculated based on unbound

fraction of drugs in CNS should be used. In this way, Pardridge and

Martin suggested replacing log BB with the BBB permeability–

surface area (PS) product; because it predicts the level of free drug

in brain [13,14]. However, some others believed that the PS

product by itself cannot predict the unbound fraction of drug

in CNS because PS product is an estimate of net influx clearance

and influenced by the possible association of drug with active

influx or efflux [10].

By contrast, it was suggested that some parameters, related to

unbound drug concentration, are used. In this manner, Kp,uu was

recommended assessing the unbound concentration gradient

across the BBB and calculated by the following equation:

Kp;uu ¼
AUCu;brain;ISF

AUCu;blood
(3)

Kp,uu is related to BBB equilibration effects such as passive diffusion

and active influx/efflux. Therefore, it can show whether drug is

transported by passive diffusion (Kp,uu would be near unity) or

actively influxed (Kp,uu would be higher than unity) or actively

effluxed (Kp,uu would be lesser than unity). Furthermore, it is

independent of protein binding in blood or binding to tissue

component of brain which is one of the main problems of using

log BB [10,15]. Alternatively, fraction of unbound drug in brain is

also considered as measure unbound drug concentration and it has

been used directly in modeling process [12]. Finally, the best

answer is that just one factor cannot explain all aspects of drug

permeation into brain. Thus, it can be best enlightened by three

factors: permeability clearance, unbound drug in brain and intra-

brain distribution of drug [10].
1032 www.drugdiscoverytoday.com
Small molecules
It can be assumed that the first exact BBB permeability model was

obtained by Levin in 1980 (Table 1). Using a set of 27 molecules of

divers structures, he found that the best fit between BBB perme-

ability coefficient (log Pc) and log P was attained for compounds

with molecular weights below 400 Da [16]. In 1988, Young et al.,

synthesized 20 compounds active on H2 histamine receptors and

measured their blood/brain partitioning (log BB). They obtained a

reasonable relation between log BB and Dlog P, with the latter

being defined as [log P octanol/water (O/W) � log P cyclohex-

ane/water (C/W)], using the following equation:

log BB ¼ �0:485ðDlog PÞ þ 0:889

n ¼ 20; r ¼ 0:831; F ¼ 40:23 (4)

According to this equation, they concluded that log P (C/W) might

play a role in partitioning process in non-polar regions of brain,

while log P (O/W) might reflect protein binding which limits the

free drug from crossing BBB [17].

Abraham et al. performed a series of analyses using solvation

parameters including dipolarity/polarizability (S), H-bond acidity

(A), H-bond basicity (B), McGowan characteristic molar volume

(V), and excess molar refraction (E), at first using 57 compounds

[18], then increased to 148 chemical entities [19]:

log BB ¼ 0:044þ 0:511E� 0:886S� 0:724A� 0:666Bþ 0:861V

n ¼ 148; r ¼ 0:843; F ¼ 71:0 (5)

Nevertheless, Abraham model constructed by 57 compounds was

validated by Norinder and Haeberlein finding that a more pre-

dictive model could be achieved by excluding E and A variables [9].

Luco used partial least square (PLS) and topological indices

approach. This model showed promising performance, as proved

by an external test set for its predictive ability. However, topolo-

gical indices and large number of descriptors make its interpreta-

tion difficult [20].

Polar surface area (PSA) is a parameter which seems to have a

distinct relationship with BB partitioning, because it has been

proved that low polar surface area is consistent with the ability
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of compounds to cross biological membranes [21]. Some studies

have proved model ability of this parameter [22]. In a remarkable

study, Osterberg and Norinder first confirmed that PSA had sui-

table correlation with some straightforward structural parameters

(the number of hydrogen bond accepting oxygen and nitrogen

atoms and the number of hydrogen atoms bonded to them). Then,

these parameters along with log P were used to construct a model

by PLS. The result was a simple predictive equation, while inter-

pretation of the findings of this model would be under debate [23].

As mentioned in previous section, most of recent reviews cri-

ticized that reliability of log BB as indicator of CNS permeation of

compounds mainly because log BB reflects the total drug concen-

tration (both free and bound) in brain, while drug action is directly

dependent on free drug concentration in brain. Therefore, some

efforts were done to use other parameters which are thought to be

more relevant to free drug concentration in the brain. In this way,

two models have been reported for log PS on the basis of reasons

made by Pardridge and Martin. Abraham constructed an equation

using 30 neutral compounds. He found that log PS has good

relationship with his descriptors (solvation parameters) [24].

Simultaneously, Liu et al. have reported some equations on dif-

ferent data set using a variety of parameters such as TPSA, log D,

and also Abraham solvation parameters [25]. Again, their results

showed no obvious new trend other than those found for log BB.

Alternatively, a recent study has used log[CSF-to-plasma con-

centration ratio (CSFPR)] and log BB to model brain permeability.

The attractive point was that log P had a negative effect on

log CSFPR whereas positively affected log BB. It can be concluded

that lipophilicity is a positive factor in favor of tissue distribution,

while partitioning to aqueous media, such as CSF, relates reversely

to lipophilicity [26].

Finally, on the basis of the recent literatures, the most appro-

priate parameters are those that include the unbound fraction of

drugs in the brains. Summerfield et al. showed that fraction of

unbound drug in the brain has inverse relation with c log P indi-

cating that although CNS diffusion may be enhanced by growing

lipophilicity, great amount of compounds will be nonspecifically

bound to brain tissue. Therefore, increasing lipophilicity will not

necessarily result in increasing efficacy of CNS compounds and it is

essential to be a balance between sufficient penetration and satis-

factory free drug in brain [27]. Similar observation was reported by
TABLE 2

Summary of models using novel in silico methods

Data

size

Experimental

parameter

In silico method

1 Winkler and Burden 106 Log BB Bayesian regularized

neural network

2 Hemmateenejad et al. 115 Log BB Principal component-neu

network

123 Log BB Genetic neural network

3 Zhang et al. 35 Log BB Nonlinear regression ana

160 Log BB Nonlinear regression ana

4 Wan et al. 108 fu Neural network

108 fu Support vector machine
Wan et al. finding a strong inverse relationship between unbound

drug fraction (fu) and lipophilicity (r = �0.78). Furthermore, they

highlighted a cut-off requirement (C log P < 4) for sufficient

unbound drug fraction (fu > 1%). Interestingly, they found that

several aromatic atoms have negative influence on fu while solvent

accessible polar surface area correlated positively [12] while it was

assumed that low polar surface area was an essential factor for

penetrating biological barriers [21].

New modeling methods
In recent years, the increasing computational possibilities and

development of sophisticated modeling algorithms have resulted

in more robust and especially accurate predictions [28]. Neural

network (NN) is one of the novel approaches that have shown its

promising ability in different modeling processes. A variety of NN

methods are used in the prediction of BBB permeability. Winkler

and Burden used Bayesian regularized neural network (BRNN) to

model BB partitioning of 106 diverse compounds. Their results

showed that BRNN is a robust approach, with resistance to over-

fitting and poor data, although the used model did not give high

performance (R2 = 0.81 and Q2 = 0.65) (Table 2). In this procedure,

automatic relevance determinant process was applied to find the

important variables of models. As expected, log P and PSA were

among the most important ones [29]. By contrast, Hemmateene-

jad tried to apply the hybrid approaches. In this way, first, princi-

pal component analysis was run to reduce the dimensions of data

and, then, different variables of selection methods such as correla-

tion-ranking and genetic algorithms in association with back-

propagation neural network were used to model log BB [30]. In

an additional trial, quantum chemical descriptors in combination

with topological indices and log P were modeled by genetic neural

network. Final results showed very high-quality statistics (R2 of

prediction for three best models were 0.904, 0.943 and 0.979).

Furthermore, models noticeably showed the importance of men-

tioned descriptors [31]. However, such complex hybrid models

make the interpretations very difficult.

A less complex novel method was introduced by Zhang: non-

linear regression analysis which was applied for partitioning to

many tissues [21,32]. In this method, a linear model was obtained

by stepwise selection and, then, obtained parameters were used in

an exponential equation [33]. The predictive capacity of such
Used descriptors Statistical
performance

Ref

Property-based descriptors R2 = 0.74 Q2 = 0.65 [29]

Topological indices R2 = 0.61 Q2 = 0.65
CIMI/bc descriptors R2 = 0.54 Q2 = 0.64

ral Different physiochemical parameters R2P ¼ 0:988 [30]

Different physiochemical
parameters + quantum chemical

descriptors

R2P ¼ 0:979 [31]

lysis Different physiochemical parameters R2 = 0.920 Q2 = 0.891 [33]

lysis Different physiochemical parameters r = 0.906 [21]

A variety of structural descriptors R2P ¼ 0:819 [12]

A variety of structural descriptors R2P ¼ 0:871
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nonlinear equations was usually better than corresponding linear

ones.

In an interesting study, Mente and Lombardo performed series

of modeling using bagged recursive decision trees. Then, a set of

289 compounds was used as test set for which ratio of log BB

between P-gp-knocked out and wild-type mice was observed in

Pfizer laboratories. The average ratio was 8.14 and nearly 60% of

these compounds had substantial P-gp-mediated efflux issues

(ratio > 3). It was shown that test set gave very poor results when

was applied to obtained models. However, when compounds with

ratio > 10 were removed, the model constructed by PSA showed

better performance [34].

Another approach is using consensus modeling in which some

different models are constructed and final predictions are obtained

by averaging the predictions of each compound made by indivi-

dual models for continuous QSAR and by majority votes from

classifications. For the first time, Subramanian and Kitchen

employed the consensus approach to find better prediction in

both regression and classification trials; however, their results

showed that consensus models did not significantly improve

the final predictions [35]. Very recently, Zhang et al. obtained

various models by nearest neighborhood and support vector

machine and, then, final prediction achieved by consensus mod-

eling. Their results revealed that although consensus prediction

always provides the most stable and robust solutions, it does not

necessarily give the best results [21]. Furthermore, Kortagere et al.

used a consensus model based on support vector machine and

generalized regression and aimed to classify 389 compounds based

on a majority vote. Like previous studies, combined predictions

did not improve the final results compared to each modeling

methods alone [36].

The only report on modeling of unbound drug fraction using

new computational approaches was the work of Wan et al. which

used neural network and support vector machine (SVM). The

results confirmed that SVM model was a robust and truthful

predictor of fu [12] (Table 2).

Targeting by prodrugs
The prodrug approach involves the administration of a drug in an

inactive form but readily able to transverse biological barriers and is

converted into active form solely in target site and this lipophilic

form will no longer be able to exit [7]. On the basis of this approach,

brain targeted chemical delivery systems (CDS) represent rational

drug design considering both delivery and targeting simultaneously

[37]. In recent years, a lot of efforts have been devoted to the

preparation of lipophilic compounds targeting CNS by structure–

activity relationship (SAR) modifications. Perioli et al. designed a

prodrug backbone for non-steroidal anti-inflammatory agents to

cure Alzheimer disease. In this respect, they attached compounds to

1,4-dihydropyridines [38]. Then, they used BBB VolSurf model

which was developed by Crivori et al. [39] and transformed 3D

fields of molecules into descriptors and correlated them to BBB

permeability by a discriminant partial least square process. Their

results showed that all 17 prodrugs are BBB+ and among them, 7

compounds were better candidates. Furthermore, log P of prodrugs

had a good correlation with BBB penetration [38]. Recently, in

another study, the same results were obtained for C log P and log k0

(retention in reverse-phase HPLC) (R2 = 0.71) [40].
1034 www.drugdiscoverytoday.com
Peptides
Peptides have the great potential as potent pharmaceuticals for

efficient specific cure of many CNS maladies. On the basis of rules

governing small molecules, peptides larger than tripeptide do not

seem to cross BBB. However, various larger peptides are capable of

penetrating BBB using various routes even passive diffusion [41].

First trials were carried out to relate BBB penetration of peptides

to different types of partition coefficients [42]. Similar to small

molecules, it was observed that CNS permeability has a poor

correlation with log POct/Wat (R = 0.6) [43], whereas it showed good

connection with Dlog P or log Phexane/ethylene gylcol (R > 0.94)

[43,44]. Furthermore, general permeability of peptides through

biological membrane showed a distinct relationship with several

potential hydrogen bonds (R > 0.8) [43–45]. However, some obser-

vations revealed that brain penetration of peptides cannot be

simply predicted through individual molecular properties or net

charges [46]. This indicated the emergence of more complex and

comprehensive models to evaluate the possible BBB permeability

of peptides. In a successful attempt, Giralt group constructed a

genetic algorithm (GA)-based model in which nine physiochem-

ical parameters, such as log P, conformation and aromaticity

considered to model the BBB penetration of randomly generated

peptides. In the first generation, some of these random peptides,

randomized on the basis of predicted permeability, were produced

and experimentally evaluated using four different techniques and,

then, peptides were ranked based on in vitro results, which was, in

turn, a basis for the development of second generation in a manner

that the second generation contained the best results of previous

generation. Such a process confirmed that BBB permeability could

hardly been anticipated by simple rules of small molecules and

needs such combined approaches [41].

In very recent years, a family of short peptides known as cell

penetration peptides (CPPs) has attracted attention as potential

peptide-based delivery vectors [47]. Therefore, some efforts were

made to predict sequences capable of penetrating biological bar-

riers, in particular BBB. Although most of these attempts were

done by trial and error, lately it was tried to model the permeability

by a set of descriptors called Z-scaled, derived from a lot of

physiochemical parameters for each amino acid. Results showed

that bulk property values (z
P

/n) had good predictive ability [48].

However, the main drawback of these descriptors is ignoring the

sequence of peptides because values of z
P

/n are similar for a set of

scrambles analogues.

Molecular modeling of BBB transporters
Transporters are polytopic membrane proteins involved in uptake

or removal of different compounds into/from different living cells.

It has been proven that many drugs are substrates of such trans-

porters especially in BBB. However, most conventional 2D-QSAR

studies ignore the role of transporters, both influx and efflux ones,

resulting in significant movement away in modeling from proper

prediction of substrates of transporters. This idea is generally

anchored in a misconception that most compounds cross through

biological barriers via passive diffusion and carrier-mediated trans-

port is just an exception in this way. However, latest studies

challenge this inspiration and support this idea that such a trans-

port is more likely to be a common trend rather than an exception

[49]. Therefore, complete understanding of transporter structures
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and functions would be of considerable value in CNS drug design.

However, this context is currently limited because of limited

availability of high-resolution 3D structures of BBB transporters.

In this way, in silico methods are good tools to circumvent such

problems. Actually, there are two major approaches to model

transporters: transporter-based design, when suitable template

of transporters is available and substrate-based design, when

appropriate knowledge of substrates against the transporter is

available [50,51].

Until now, a series of BBB transporters have been subjects of

various transporter-based methods like homology (comparative)

modeling and molecular dynamic simulations. In this case, ABC

transporters have been extensively studied because of their

remarkable role in drug efflux. However, up to now, models have

been based on bacteria origin. For example, P-gp has been modeled

using structure of an E. coli-based protein, MsbA, sharing 30%

homology with P-gp. Although using such proteins in modeling

transporters have provided some valuable insights about trans-

porters mechanisms and structures, unfortunately, these prokar-

yote proteins are not drug transporters. Therefore, a human ABC

transporter structure is crucial for further studies [52].

By contrast, indirect methods like comparative molecular field

analysis (CoMFA) and comparative molecular similarity index

analysis (CoMSIA) have been used to gather information about

transporter structures through common pharmacophores of their

substrates. By these methods, it would be possible to derive general

pharmacophoric pattern of substrates/inhibitors. Recent efforts

have resulted in identifying pharmacophore for some ABC trans-

porters such as P-gp or MRPs [53]. Also, recently, models have been

developed for choline transporter used as a vector for CNS drug

delivery [54]. On the basis of such modeling, a theoretical render-

ing of active binding site of choline transporters has been achieved

[55,56].

Concluding remarks
Despite several years of efforts, CNS drug design remains the

bottleneck of drug development process mainly because of the

very efficient limiting factor of BBB. This challenge prompted a
wide variety of studies to overcome the problem of brain penetra-

tion. In this way, computational approaches have shown a pro-

mising trend toward transversing BBB. In this context, different in

silico methods have been developed. However, there is a never-

ending challenge between interpretability and predictive ability of

models in view of the fact that simple models, generally derived by

linear regression, provide good vision about the process of per-

meation, while not being usually high-quality predictors. By con-

trast, novel modeling approaches like neural networks afford very

accurate predictions while their elucidation would be near to

impossible task. Consequently, complex models cannot be used

in lead optimization because the main question of designer for the

next step is ‘which compound should I make next?’ [28].

Besides, the main problem seems to be completely ignored

‘which parameter should be used in modeling as surrogate of brain

permeability of drugs?’ although, in recent years some efforts were

performed to make clear answer. In this way, most of literatures

based on experimental analysis come to this conclusion that

parameters derived from total concentration like log BB are very

imperfect measure of BBB penetration [10,15]. Despite this con-

clusion, it seems that computational divisions close the eyes to this

fact and up to now nearly all papers still use log BB. Conversely,

although based on ‘unbound drug hypothesis’, switching from

log BB into parameters related to unbound drug concentrations

might give better idea, again relying on just on these parameters

would be the next misleading trend because only one parameter

cannot give complete details about BBB permeability and it con-

sists of at least three parts of permeability clearance, brain

unbound fraction and also intra-brain distribution [10]. Finally,

rapid changes of CND drug discovery in recent years call attention

to this reality that just stick into modeling of concentrations and

related pharmacokinetic data cannot create a good perception of

CNS activity of drugs which is highly dependent on biology and

pharmacology basis of both compounds and brain [15]. Thus, it

would be inevitable to combine the pharmacodynamic and phar-

macokinetic data including all information about molecular/cel-

lular processes of BBB permeability of drugs parallel to their CNS

actions.
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