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Pharmacophore modeling and
applications in drug discovery:
challenges and recent advances
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Pharmacophore approaches have become one of the major tools in drug discovery after the past

century’s development. Various ligand-based and structure-based methods have been developed for

improved pharmacophore modeling and have been successfully and extensively applied in virtual

screening, de novo design and lead optimization. Despite these successes, pharmacophore approaches

have not reached their expected full capacity, particularly in facing the demand for reducing the current

expensive overall cost associated with drug discovery and development. Here, the challenges of

pharmacophore modeling and applications in drug discovery are discussed and recent advances and

latest developments are described, which provide useful clues to the further development and

application of pharmacophore approaches.
Introduction
The concept of pharmacophore was first introduced in 1909 by

Ehrlich [1], who defined the pharmacophore as ‘a molecular

framework that carries (phoros) the essential features responsible

for a drug’s (pharmacon) biological activity’. After a century’s

development, the basic pharmacophore concept still remains

unchanged, but its intentional meaning and application range

have been expanded considerably. According to the very recent

definition by IUPAC [2], a pharmacophore model is ‘an ensemble

of steric and electronic features that is necessary to ensure the

optimal supramolecular interactions with a specific biological

target and to trigger (or block) its biological response’. Apart from

this official definition, some other similar definitions, as well as

remarks, have been described in the literature [3–5]. The overall

development and history of the pharmacophore concept through

the past century has been reviewed by Günd [3] and Wermuth [4].

A pharmacophore model can be established either in a ligand-

based manner, by superposing a set of active molecules and

extracting common chemical features that are essential for their

bioactivity, or in a structure-based manner, by probing possible

interaction points between the macromolecular target and

ligands. Pharmacophore approaches have been used extensively

in virtual screening, de novo design and other applications such as
E-mail address: yangsy@scu.edu.cn.
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lead optimization and multitarget drug design (Fig. 1). A variety of

automated tools for pharmacophore modeling and applications

appeared constantly after the advances in computational chem-

istry in the past 20 years; these pharmacophore modeling tools,

together with their inventor(s) and typical characteristics, are

summarized in Supplementary Table S1. Many successful stories

of pharmacophore approaches in facilitating drug discovery have

been reported in recent years [6,7]. The pharmacophore approach,

however, still faces many challenges that limit its capability to

reach its expected potential, particularly with the demand for

reducing the current high cost associated with the discovery

and development of a new drug. This article discusses the chal-

lenges of pharmacophore modeling and applications in drug

discovery and reviews the most recent advances in dealing with

these challenges.

Ligand-based pharmacophore modeling
Ligand-based pharmacophore modeling has become a key com-

putational strategy for facilitating drug discovery in the absence of

a macromolecular target structure. It is usually carried out by

extracting common chemical features from 3D structures of a

set of known ligands representative of essential interactions

between the ligands and a specific macromolecular target. In

general, pharmacophore generation from multiple ligands

(usually called training set compounds) involves two main steps:
ee front matter � 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2010.03.013
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FIGURE 1

The full framework of pharmacophore architecture.

1 Catalyst is now incorporated into Discovery Studio, available from Accelrys
Inc., San Diego, CA, USA.
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creating the conformational space for each ligand in the training

set to represent conformational flexibility of ligands, and aligning

the multiple ligands in the training set and determining the

essential common chemical features to construct pharmacophore

models. Handling conformational flexibility of ligands and con-

ducting molecular alignment represent the key techniques and

also the main difficulties in ligand-based pharmacophore model-

ing. Currently, various automated pharmacophore generators

have been developed, including commercially available software

– such as HipHop [8], HypoGen [9] (Accelrys Inc., http://www.ac-

celrys.com), DISCO [10], GASP [11], GALAHAD (Tripos Inc.,

http://www.tripos.com), PHASE [12] (Schrödinger Inc., http://

www.schrodinger.com) and MOE (Chemical Computing Group,

http://www.chemcomp.com) – and several academic programs.

These programs differ mainly in the algorithms used for handling

the flexibility of ligands and for the alignment of molecules, which

are outlined in Supplementary Table S1. There are some references

in literature, such as Refs. [5,13,14], showing the differences,

advantages and disadvantages of these programs; however,

describing and analyzing the different programs is not our goal

here.

Despite the great advances, several key challenges in ligand-

based pharmacophore modeling still exist. The first challenging

problem is the modeling of ligand flexibility. Currently, two

strategies have been used to deal with this problem: the first is

the pre-enumerating method, in which multiple conformations

for each molecule are precomputed and saved in a database [13].

The second is the on-the-fly method, in which the conformation

analysis is carried out in the pharmacophore modeling process
[13]. The first approach has the advantage of lower computing cost

for conducting molecular alignment at the expense of a possible

need for a mass storage capacity. The second approach does not

need mass storage but might need higher CPU time for conducting

rigorous optimization. It has been demonstrated that the pre-

enumerating method outperforms the on-the-fly calculation

approach [15]. Currently, a substantial number of advanced algo-

rithms have been established to sample the conformational spaces

of small molecules, which are listed in Supplementary Table S2.

Some of these algorithms, such as poling restraints [16], systematic

torsional grids [17], directed tweak [18], genetic algorithms [19]

and Monte Carlo [20], have been implemented in various com-

mercial and academic pharmacophore modeling programs. Never-

theless, a good conformation generator should satisfy the

following conditions: (i) efficiently generating all the putative

bound conformations that small molecules adopt when they

interact with macromolecules, (ii) keeping the list of low-energy

conformations as short as possible to avoid the combinational

explosion problem and (iii) being less time-consuming for the

conformational calculations. Several new or modified tools devel-

oped recently for conformational generation seem to outperform

the previous algorithms in some aspects. MED-3DMC, developed

by Sperandio et al. [21], uses a combination of the Metropolis

Monte Carlo algorithm, based on a SMARTS mapping of the

rotational bond, and the MMFF94 van der Waals energy term.

MED-3DMC has been reported to outperform Omega when

applied on certain molecules with a low to medium number of

rotatable bonds [21]. Liu et al. [22] developed a conformation

sampling method named ‘Cyndi’, which is based on a multiob-

jective evolution algorithm. Cyndi was validated to be markedly

superior to other conformation generators in reproducing the

bioactive conformations against a set of 329 testing structures

[22]. CAESAR [23] is another conformer generator, which is based

on a divide-and-conquer and recursive conformer buildup

approach. This approach also takes into consideration local rota-

tional symmetry to enable the elimination of conformer dupli-

cates owing to topological symmetry in the systematic search.

CAESAR has been demonstrated to be consistently 5–20 times

faster than Catalyst/FAST.1 The speedup is even more notable

for molecules with high topological symmetry or for molecules

that require a large number of conformational samplings.

Molecular alignment is the second challenging issue in ligand-

based pharmacophore modeling. The alignment methods can be

classified into two categories in terms of their fundamental nature:

point-based and property-based approaches [15]. The points (in

the point-based method) can be further differentiated as atoms,

fragments or chemical features [5]. In point-based algorithms,

pairs of atoms, fragments or chemical feature points are usually

superimposed using a least-squares fitting. The biggest limitation

of these approaches is the need for predefined anchor points

because the generation of these points can become problematic

in the case of dissimilar ligands. The property-based algorithms

make use of molecular field descriptors, usually represented by sets

of Gaussian functions, to generate alignments. The alignment

optimization is carried out with some variant of similarity measure
www.drugdiscoverytoday.com 445
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FIGURE 2

Pharmacophore models of cyclin-dependent kinase 2 (CDK2) inhibitors. (a) Pharmacophore models of CDK2 inhibitors developed using Catalyst by Hecker et al.
[28], Toba et al. [29] and Vadivelan et al. [30]. (b) The basic process for the generation of multicomplex-based comprehensive pharmacophore map of CDK2

inhibitors. The chemical features are color coded: green, hydrogen-bond acceptor; magenta, hydrogen-bond donor; light blue, hydrophobic feature; orange,

aromatic ring.

2 SBP is now incorporated into Discovery Studio, available from Accelrys Inc.,

San Diego, CA, USA.
3 Discovery Studio available from Accelrys Inc., San Diego, CA, USA.
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of the intermolecular overlap of the Gaussians as the objective

function. Conventional molecular alignment algorithms have

been extensively reviewed elsewhere [15]. New alignment meth-

ods continue to be actively developed. Recently developed meth-

ods include stochastic proximity embedding [24], atomic property

fields [25], fuzzy pattern recognition [26] and grid-based interac-

tion energies [27].

Another challenging problem lies in the practical task of proper

selection of training set compounds. This problem, apparently

being simple and non-technical, often confuses users, even experi-

enced ones. It has been demonstrated that the type of ligand

molecules, the size of the dataset and its chemical diversity affect

the final generated pharmacophore model considerably [13]. In

some cases, completely different pharmacophore models of

ligands interacting with the same macromolecular target could

be generated from the same algorithm and program that uses

different training sets. For example, Hecker et al. [28], Toba

et al. [29] and Vadivelan et al. [30] have independently generated

three pharmacophore models of cyclin-dependent kinase 2

(CDK2) inhibitors. They used the same program, Catalyst, but

different training sets. The three pharmacophore models are found

to be totally different from one another in terms of the feature

categories, as well as the location constraints of features (Fig. 2a),

for which a further discussion is presented in a subsequent section

of this review.

Structure-based pharmacophore modeling
Structure-based pharmacophore modeling works directly with the

3D structure of a macromolecular target or a macromolecule–
446 www.drugdiscoverytoday.com
ligand complex. The protocol of structure-based pharmacophore

modeling involves an analysis of the complementary chemical

features of the active site and their spatial relationships, and a

subsequent pharmacophore model assembly with selected fea-

tures. The structure-based pharmacophore modeling methods

can be further classified into two subcategories: macromolecule–

ligand-complex based and macromolecule (without ligand)-based.

The macromolecule–ligand-complex-based approach is conveni-

ent in locating the ligand-binding site of the macromolecular

target and determining the key interaction points between ligands

and macromolecule. LigandScout [31] is an excellent representa-

tion that incorporates the macromolecule–ligand-complex-based

scheme. Other macromolecule–ligand-complex-based pharmaco-

phore modeling programs include Pocket v.2 [32] and GBPM [33].

The limitation of this approach is the need for the 3D structure of

macromolecule–ligand complex, implying that it cannot be

applied to cases when no compounds targeting the binding site

of interest are known. This can be overcome by the macromole-

cule-based approach. The structure-based pharmacophore (SBP)

method2 implemented in Discovery Studio3 is a typical example of

a macromolecule-based approach. SBP converts LUDI [34] inter-

action maps within the protein-binding site into Catalyst phar-

macophoric features: H-bond acceptor, H-bond donor and

hydrophobe. The main limitation of the SBP flowchart is that

the derived interaction maps generally consist of a large number of
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unprioritized Catalyst features, which complicates its application

in such tasks as 3D database searches. To overcome this problem,

Barillari et al. [35] recently proposed a fast knowledge-based

approach, hot-spots-guided receptor-based pharmacophores (HS-

Pharm). This approach enables the prioritization of cavity atoms

that should be targeted for ligand binding, by training machine

learning algorithms with atom-based fingerprints of known

ligand-binding pockets. Tintori et al. [36] have also reported

another apoprotein-based approach. With this approach, the

GRID [37] molecular interaction fields (MIFs) are first calculated

by using different probes for the binding site of interest, followed

by the selection and subsequent conversion of the points of

minimum of MIFs into pharmacophoric features.

A frequently encountered problem for structure-based pharma-

cophore modeling, not only the macromolecule-based approach,

is that too many chemical features (generally not prioritized) can

be identified for a specific binding site of the macromolecular

target. However, a pharmacophore model composed of too many

chemical features (for example, >7 chemical features) is not

suitable for practical applications, such as 3D database screening.

Thus, it is necessary to select a limited number of chemical features

(typically three to seven features) to construct a practical pharma-

cophore hypothesis, although this is not an easy task in many

cases. Another problem is that the obtained pharmacophore

hypothesis cannot reflect the quantitative structure–activity rela-

tionship (QSAR) because the model is derived just based on a single

macromolecule–ligand complex or a single macromolecule. In an

attempt to overcome these problems, we, in a recent study, have

suggested using a multicomplex-based comprehensive map and

most-frequent pharmacophore model [38]. In that study, a multi-

complex-based method was used to generate a comprehensive

pharmacophore map of CDK2 based on a collection of 124 crystal

structures of human CDK2 inhibitor complex. The chemical fea-

tures for each complex were first identified by LigandScout, fol-

lowed by clustering all the features to form a comprehensive

pharmacophore map. The established pharmacophore map con-

tains almost all the chemical features important for CDK2–inhi-

bitor interactions (Fig. 2b). We found that, with the exception of a

feature of aromatic ring (orange) in Hecker model, every pharma-

cophore feature in the reported ligand-based models (Hecker

model, Toba model and Vadivelan model; Fig. 2a) can be matched

to a feature in our comprehensive map, suggesting that these

ligand-based models are subgraphs of our comprehensive map.

The only exception (the aromatic ring feature in Hecker model)

seems to occur in ligand scaffolds. A chemical feature occurred in

small molecular scaffolds, which should be a pseudo-pharmaco-

phore feature because it does not represent a ligand–macromole-

cule interaction, cannot be detected by a structure-based

pharmacophore modeling approach. Because the comprehensive

pharmacophore map is too restrictive and not suitable for the

virtual screening, a reduced model is needed for a real application.

A feasible solution is to select the most-frequent features that were

recognized as the features important to the activity of the CDK2

inhibitors. Thus, the top-ranked seven features, which are present

in the 124 complexes with more than 25% probability, have been

selected and combined to form a most-frequent-feature pharma-

cophore model. Validation studies of the most-frequent-feature

model have shown not only that it can discriminate successfully
between known CDK2 inhibitors and the molecules of focused

inactive dataset but also that it is capable of correctly predicting

the activities of a wide variety of CDK2 inhibitors in an external

active dataset [38].

Pharmacophore-model-based virtual screening
Once a pharmacophore model is generated by either the ligand-

based or the structure-based approach, it can be used for querying

the 3D chemical database to search for potential ligands, which is

so-called ‘pharmacophore-based virtual screening’ (VS). Pharma-

cophore-based VS and docking-based VS represent the mainstream

of VS tools at the present time. In contrast to its counterpart, the

docking-based VS method, pharmacophore-based VS reduces the

problems arising from inadequate consideration of protein flex-

ibility or the use of insufficiently designed or optimized scoring

functions by introducing a tolerance radius for each pharmaco-

phoric feature.

In the pharmacophore-based VS approach, a pharmacophore

hypothesis is taken as a template. The purpose of screening is

actually to find such molecules (hits) that have chemical features

similar to those of the template. Some of these hits might be

similar to known active compounds, but some others might be

entirely novel in scaffold. The searching for compounds with

different scaffolds, while sharing a biological activity is usually

called ‘scaffold hopping’ [39]. The screening process involves two

key techniques and difficulties: handling the conformational flex-

ibility of small molecules and pharmacophore pattern identifica-

tion. The strategies for handling the flexibility of small molecules

in pharmacophore-based VS are very similar to those used in

pharmacophore modeling. Again, the flexibility of small mole-

cules is handled by either pre-enumerating multiple conforma-

tions for each molecule in the database or conformational

sampling at search time. Pharmacophore pattern identification,

usually called ‘substructure searching’, is actually to check

whether a query pharmacophore is present in a given conformer

of a molecule. The frequently used approaches for substructure

searching are based on graph theory, which include Ullmann [40],

the backtracking algorithm [41], and the GMA algorithm [42].

Pharmacophore-based VS can be very time-consuming, espe-

cially in cases of screening large chemical databases with flexible

molecules, which is currently a key challenge in pharmacophore-

based VS. A commonly used method to speed up the screening

process is the multilevel searching approach [5]. In this approach,

a series of screening filters are applied to the molecules in an

increasing order of complexity so that the first filters are fast and

simple, whereas successive ones are more time-consuming but are

applied only to a small subset of the entire database.

However, the most challenging problem for pharmacophore-

based VS is that in many cases, few percentages of the virtual hits

are really bioactive; in other words, the screening results bear a

higher ‘false positive’ rate and/or a higher ‘false negative’ rate.

Many factors can contribute to this problem, including the quality

and composition of the pharmacophore model and whether and

how much the macromolecular target information is involved.

First, the most apparent factor is associated with the deficiency of a

pharmacophore hypothesis. To address this problem requires a

comprehensive validation and optimization to the pharmaco-

phore model. Various validation methods such as cross-validation
www.drugdiscoverytoday.com 447
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FIGURE 3

Schematic representation of the relationship between the full pharmacophore map identified by the structure-based approach and the pharmacophore models

established by the ligand-based method. The upper schematically shows the chemical features in the ligand-binding site of a macromolecular target. The middle
indicates the various pharmacophore models established by a ligand-based pharmacophore modeling method. The lower schematically depicts several possible

cases in pharmacophore-based virtual screening. A tick (H) means that the selected molecule conforms to the requirements of pharmacophore and the shape of

ligand-binding site. A cross (�) indicates that the selectedmolecule does not satisfy the requirements of either pharmacophore or the shape of ligand-binding site

(because of the atomic bumping).
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and test set method have been suggested, which were reviewed

recently by Triballeau et al. [43]. The validation process is usually

associated with model optimization. Lately, Sun et al. [44] have

developed a genetic algorithm-guided pharmacophore query opti-

mization program, in which the optimization is carried out by

automatically adjusting the position and tolerance radius of each

pharmacophoric feature. The final query has been validated by

using a test set method, which shows a considerably improved hit

rate. Second, because the pharmacophore model used for 3D query

is generally one of the subgraphs of the full pharmacophore map,

screening with this pharmacophore query might not retrieve

molecules that match other subgraphs except for the selected

one, which is probably an important reason for the higher false

negative rate in some studies (Fig. 3). Third, the flexibility of target

macromolecule in pharmacophore approaches is handled by

introducing a tolerance radius for each pharmacophoric feature,

which is unlikely to fully account for macromolecular flexibility in

some cases. Some recent attempts [45,46] to incorporate molecular

dynamics simulations in pharmacophore modeling have sug-

gested that the dynamics pharmacophore models generated from

MD simulation trajectories show considerably better representa-

tion of the flexibility of pharmacophore.

Another factor that might lead to the high false positive rate is

that the steric restriction by the macromolecular target is not

sufficiently considered in pharmacophore models, although it is

partly counted for by the consideration of excluded volumes. In
448 www.drugdiscoverytoday.com
addition, most of the interactions between ligand and protein are

distance sensitive – particularly the short-range interactions, such

as the electrostatic interaction, for which a pharmacophore model

is difficult to account for. An efficient approach is the synergistic

combination of pharmacophore-based VS and docking-based VS.

Because inherent limitations of each of these screening techniques

are not easily resolved, their combination in a hybrid protocol can

help to mutually compensate for these limitations and capitalize

on their mutual strengths. Various combined virtual screening

strategies and their validity have been well reviewed by Talevi et al.

[47], Kirchmair et al. [48] and Muegge [49]. This approach has also

been routinely used in our group, with which we have successfully

obtained several real hits validated experimentally for inhibition

against protein kinases Aurora-A [50], Syk [51] and ALK5 [52].

Pharmacophore-based de novo design
Besides the pharmacophore-based VS described above, another

application of pharmacophore is de novo design of ligands. The

compounds obtained from pharmacophore-based VS are usually

existing chemicals, which might be patent protected. In contrast

to pharmacophore-based VS, the de novo design approach can be

used to create completely novel candidate structures that conform

to the requirements of a given pharmacophore. The first pharma-

cophore-based de novo design program is NEWLEAD [53], which

uses as input a set of disconnected molecular fragments that are

consistent with a pharmacophore model, and the selected sets of
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disconnected pharmacophore fragments are subsequently con-

nected by using linkers (such as atoms, chains or ring moieties).

Actually, NEWLEAD can only handle the cases in which the

pharmacophore features are concrete functional groups (not

abstract chemical features). Other shortcomings of the NEWLEAD

program include that the sterically forbidden region of the binding

site is not considered and that, as in traditional de novo design

programs, the compounds created by the NEWLEAD program

might be difficult to chemically synthesize. Other programs such

as LUDI4 and BUILDER [54] can also be used to combine identi-

fication of structure-based pharmacophore with de novo design.

They, however, need the knowledge of 3D structures of the macro-

molecular targets.

To overcome drawbacks of the current pharmacophore-based de

novo design software, we have developed a new program, PhDD (a

pharmacophore-based de novo design method of drug-like mole-

cules) [55]. PhDD can automatically generate drug-like molecules

that satisfy the requirements of an input pharmacophore hypoth-

esis. The pharmacophore used in PhDD can be composed of a set of

abstract chemical features and excluded volumes that are the

sterically forbidden region of the binding site. PhDD first generates

a set of new molecules that completely conform to the require-

ments of the given pharmacophore model. Then a series of assess-

ments to the generated molecules are carried out, including

assessments of drug-likeness, bioactivity and synthetic accessibil-

ity. PhDD was tested on three typical examples: pharmacophore

hypotheses of histone deacetylase, CDK2 and HIV-1 integrase

inhibitors. The test results showed that PhDD was able to generate

molecules with completely novel scaffolds. A similarity analysis

with the use of Tanimoto coefficients demonstrated that the

generated molecules should have similar biological functions to

the existing inhibitors, although they are structurally different.
4 LUDU is now incorporated into Discovery Studio, available from Accelrys
Inc., San Diego, CA, USA.
Concluding remarks
Pharmacophore approaches have evolved to be one of the most

successful concepts in medicinal chemistry through the collective

efforts of many researchers in the past century. In particular, con-

siderable progress of pharmacophore technology in the past two

decades has made pharmacophore approachesone of the main tools

in drug discovery. Despite the advances in key techniques of phar-

macophore modeling, there is still room for further improvement to

derive more accurate and optimal pharmacophore models, which

include better handling of ligand flexibility, more efficient mole-

cular alignment algorithms and more accurate model optimization.

Lower efficiency (computational time cost) and poor effect (lower

hit rate) of pharmacophore-based VS seriously obstructs the appli-

cations of pharmacophore in drug discovery. The former, however,

will be further reduced and diminished by the increasing capacity

and reducing cost of computer hardware. ‘Synergistic’ combination

of pharmacophore method and other molecular modeling

approaches such as docking is a good strategy to further improve

the effect. Compared with pharmacophore-based VS, pharmaco-

phore-based de novo design shows a unique advantage in building

completely novel hit compounds. In addition to virtual screening

and de novo design, the applications of pharmacophore have also

been extended to lead optimization [56], multitarget drug design

[57], activity profiling [58] and target identification [59]. The

increasing application ranges of pharmacophore, together with

success stories in drug discovery, enable further enrichment of

the pharmacophore concept and promote the development and

application of pharmacophore approaches.

Appendix A. Supplementary data
Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.drudis.2010.03.013.
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