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Teaser The field of proteomics has developed quickly over the past decade and its
application to cancer research has considerable potential in the area of

precision medicine.
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Proteomics has emerged as an invaluable tool in the quest to unravel the

biochemical changes that give rise to the hallmarks of cancer. In this

review, we present the advances and challenges facing proteomics

technology as applied to cancer research, and address how the information

gathered so far has helped to enhance understanding of the mechanisms

underlying the disease and contributed to the discovery of biomarkers and

new drug targets. We conclude by presenting a perspective on how

proteomics could be applied in the future to determine prognostic

biomarkers and direct strategies for effective cancer treatment.

Introduction
The viability of multicellular organisms requires that individual cells must proliferate, differen-

tiate, quiesce, senesce, and even die on behalf of organism homeostasis. The control of cellular

fate involves many levels of complexity and organization, from hormonal signaling to cell cycle

checkpoints. The foundation of several diseases lies in the malfunction and/or loss of this control,

leading to the disruption of system homeostasis and, eventually, death. Cancers are the most

frequent examples of such aberrations in the mechanisms that control cell fate.

Malignant transformation is a multistep process in which genetic and epigenetic alterations

result in the malfunction of the normal checkpoints that control cell fate. Many different routes

lead to a variety of malignant phenotypes observed in human cancers. However, it is a consensus

that there is a defined collection of ‘abilities’ that all malignant cells must acquire to develop into

a cancer. These include: sustained proliferative signaling; evasion of growth suppressive signal-

ing; resistance to cell death; limitless replication; induction of angiogenesis; invasion; and

acquisition of metastatic capability [1]. Underlying all these traits, known as the hallmarks of

cancer, is the genomic instability that fuels the gradual acquisition of these capabilities through

Darwinian natural selection during the onset and progression of the disease, which it does

by creating a diversity of phenotypes within the transformed cell population. A remarkable
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heterogeneity exists both between different cancer types and

within individual tumors. This is a consequence of the many

different genetic and epigenetic alterations that are able to initiate

malignant transformation overlaid with the effect of genomic

instability and continuous selection and/or adaptation during

tumor evolution [2]. Given this inherent inter- and intratumoral

heterogeneity, and the influence of Darwinian selection, it is of

little surprise that strategies targeting specific cancer cell traits,

such as inhibition of an overactivated signaling pathway or block-

ing DNA synthesis, are often undermined by the emergence of

drug resistance, resulting in tumor relapse and failure to eliminate

the underlying malignancy [3,4]. The emergence of resistance and

the recalcitrance of many types of cancer to long-term clinical

control illustrate the need for large-scale and high-throughput

biological data acquisition from tumors and cancer cells to provide

new therapeutic strategies and additional guidance for the appli-

cation of existing treatments.

In this regard, since 2008, when the first cancer genome was

fully sequenced [5], next-generation sequencing has provided a

massive amount of information about mutations that could

trigger and drive tumorigenesis, providing novel targets for diag-

nosis, prognosis, and drug discovery (reviewed in [6]). However,

such studies are unable to provide a complete picture of the

relevant biological changes driving tumorigenesis. In addition

to mutational events, miRNA deregulation, changes in DNA

methylation patterns, and post-translational modifications

(PTMs) of proteins can also alter the expression of oncogenes

and/or tumor suppressors. Furthermore, some mutations func-

tion in a context-dependent manner, such that their detection

alone is of limited utility in directing treatment strategies. For

example, drugs targeting the same genetic lesion on the BRAF

gene (V600E) in different tumors, can lead to distinct outcomes

according to the expression levels of wild-type epidermal growth

factor receptor (EGFR) [7]. Moreover, although some mutations

function as drivers of tumor progression, these typically exist in a

background of many others passenger mutations, which can

cloud the identification of pathologically relevant driver events.

Therefore, the search for reliable cancer biomarkers and thera-

peutic targets using genomic approaches is restrained by a variety

of intrinsic features of the disease.

The concept of a biomarker refers to a characteristic that can be

measured as an indicator of the physiological and/or pathological

process or response to therapeutic intervention [8]. In cancer, the

diversity of tumor phenotypes, the relation with the tumor

microenvironment, and the underlying pathologies themselves

result in multiple points for creation of potential biomarkers.

These include: cancer-associated genomic mutations; noncoding

RNAs; expression of specific proteins and/or peptides; circulating

tumor cells (CTCs); and genomic, proteomic, and metabolomic

signatures. Some well-established biomarkers have proved to be

valuable tools for cancer risk assessment. For example, the BRCA1

and BRCA2 mutations, which correlate with significantly in-

creased risk for ovarian and breast cancer [9]. Similarly, EGFR

mutation status correlates with sensitivity to tyrosine kinase inhi-

bitors in lung cancer [10], and presence of CTCs can monitor the

effectiveness of prostate cancer treatment [11]. In the context of

tumor heterogeneity and the current trend toward targeted thera-

pies, the identification of reliable and specific biomarkers has
fundamental importance in drug discovery by allowing the char-

acterization and classification of the patient populations who are

most likely to respond to specific therapeutic agents. Given that

the proteome is the result of genetic background, PTMs, environ-

mental, and microenvironmental factors, proteomic-based

approaches to biomarker discovery are able to address levels of

biological complexity that cannot be addressed with genomic and

transcriptomic approaches, and provide data that are complemen-

tary to these analyses.

The application of proteomics to cancer has progressed along-

side technological developments in the wider field of proteomics

itself. The design of new strategies for sample fractionation, label-

ing, processing, and analysis combined with the increased speed

and sensitivity of the latest generation of mass spectrometers (MS)

have increased the capacity of proteomics to identify and quantify

proteins and PTMs across a wide dynamic range.

The evolution of proteomics for biomarker discovery
The first proteomic platform for studying complex diseases, in-

cluding cancer, was based on 2D polyacrylamide gel electropho-

resis (2D-PAGE) [12]. In this approach, proteins are separated by

their isoelectric point (first dimension) and molecular mass (sec-

ond dimension), providing the opportunity to analyze several

hundred proteins simultaneously and characterize their expres-

sion patterns in different samples (Fig. 1a). The development of

soft ionization techniques, such as electrospray ionization (ESI)

[13] and matrix-assisted laser desorption/ionization (MALDI) [14],

made it possible to analyze proteins and peptides by MS, enabling

the identification of proteins separated by 2D-PAGE more readily

than by using previous sequencing-based techniques. One of the

pioneering studies in cancer using 2D-PAGE was by Hanash and

co-workers, who compared lymphoblasts from patients with dif-

ferent subtypes of acute lymphoblastic leukemia (ALL). Twelve

protein spots were found to be differentially regulated between the

different ALL subtypes [15].

Despite the utility of the method, variability between replicate

2D-PAGE gels can hinder the identification of differentially regu-

lated proteins. To overcome this limitation, 2D-fluorescence dif-

ferential-in-gel electrophoresis (DIGE) technology was developed

by Unlu and colleagues [16]. This technology utilizes different

fluorescent dyes to label samples from different conditions.

Labeled samples are then mixed and analyzed on the same gel,

eliminating the effects of gel-to-gel variation from the analysis

(Fig. 1b). Zhou and colleagues used 2D-DIGE to identify cancer-

specific protein markers in esophageal carcinoma [17]. In this

study, 58 protein spots were found to be upregulated in cancer

cells compared with normal controls, while a further 107 were

found to be downregulated. Although the 2D-DIGE approach has

gone some way to addressing the issue of gel-to-gel variability,

other technical challenges have limited the application of the

technique. 2D-PAGE suffers from a limited dynamic range. Addi-

tionally, where proteins co-migrate, it is not possible to infer

directly which species is responsible for the differential regulation

of protein spot volume [18]. Furthermore, 2D-PAGE is not an

effective method for the separation of membrane proteins, which

represent approximately 50% of important drug targets [19].

Nonetheless, despite these challenges, 2D techniques are still used

with success in some areas of cancer biology research [20].
www.drugdiscoverytoday.com 265
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FIGURE 1

Overview of quantitative proteomics approaches used for cancer proteome studies. Relative or absolute quantification is achieved by either 2D-gel- or mass
spectrometry (MS)-based proteomics. 2D gels allow relative protein quantification by comparing protein spot volume between different gels (a) or within the

same gel using 2D-differential-in-gel electrophoresis (DIGE) technology (b). For 2D-DIGE, each control or disease sample is labeled with either fluorescent Cy3 or

Cy5 dyes before running the gel. Samples are combined and run on a single gel, and the resultant gel image is analyzed based on the fluorescent green or red
intensities. In MS-based quantitative approaches, protein abundances can be estimated by stable isotope labeling or label-free approaches. Proteins can be
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More recently, developments in high-performance liquid chro-

matography in combination with electrospray ionization and MS

have led to so-called ‘shotgun proteomics approaches’ superseding

2D-PAGE, the method of choice for the analysis of complex

proteomics in most areas of biology. In this approach, the entire

set of proteins present in a target proteome (cell, tissue, fluids, or

organism) is digested in solution with specific enzymes (most

commonly trypsin). The mixture, comprising several thousand

peptides from different proteins, is separated by liquid chroma-

tography and analyzed in tandem by MS (LC–MS/MS), resulting in

the identification and quantification of a large number of proteins

in a single experiment. Furthermore, technological advances have

seen successive generations of high-performance MS benefit from

increased resolving power, mass accuracy, scan rate, and sensitivi-

ty. With the introduction of hybrid instruments, normally com-

bining ion-trap and Orbitrap analyzers, MS-based proteomics has

become the most effective tool for the investigation of complex

proteomes, including the oncoproteome [21].

MS-based quantitative proteomics and drug discovery
Although there can be some utility in merely defining lists of

proteins present in a sample, the ability to quantify these proteins

is more informative if the underlying biological processes are to be

understood. In relation to shotgun proteomics, the utility of such

approaches owes much to the development of unique strategies

and chemistries that have enabled the quantitation as well as

identification of the proteins present in different samples. These

innovations include stable isotope labeling strategies and label-

free techniques.

Stable isotope labeling is based on the incorporation of heavy

atoms on specific molecules that are introduced chemically or

metabolically into the protein or peptide structures (reviewed in

[22]). Methods based on the chemical labeling of proteins and/or

peptides exhibit high quantification accuracy because systematic

errors from sample handling can be minimized because different

samples are combined in the initial steps of sample preparation.

One of the first chemical labeling methods used for protein

quantification by MS was the isotope-coded affinity tag (ICAT)

approach [23]. This is based on the derivatization of cysteine

residues with an ICAT reagent, comprising a thiol-reactive group,

a biotin affinity tag, and a linker group containing ‘light’ or ‘heavy’

isotopes. Thiol-containing peptides are separated by biotin affinity

chromatography and analyzed by LC–MS/MS. The presence of the

ICAT tag results in separation of the peptides at the precursor

(MS1) level (mass shift of +8 Da and +9 Da for the original and

cleavable ICAT reagents, respectively) and allows for the relative

quantification of peptides containing ‘light’ and ‘heavy’ tags

(Fig. 1c). This approach has been successfully used to determine
chemically tagged using an isotope-coded affinity tag (ICAT) reagent, where the ra
different samples in the same MS run (c). A similar labeling strategy can be perfo

quantification (iTRAQ), tandem mass tags (TMT), or dimethyl labeling. The relative p

of precursor ions at MS1 level (Dimet-28, -30, -32, and -34 for dimethyl labeling) or re

MS run (d). In the stable isotope labeling with amino acids in cell culture (SILAC) me
either unlabeled (‘light’) or metabolically labeled with ‘heavy’ SILAC amino acids.

precursor ion intensities in the same MS run (e). Label-free quantitative approaches

in different MS runs (f). In the targeted selected reaction monitoring (SRM) approa

concentration. Peptide abundance is measured by comparing the native peptide t
signal generated when specific peptides are selected and fragmented, and prede
differential protein expression in prostate cancer cells exposed to

androgens; in total, 77 proteins were found differentially regulated

by the synthetic androgen R1881 in locally advanced carcinoma of

the prostate (LACaP) cells, many of which had not previously been

reported to be responsive to androgen stimulation [24].

Other common labeling chemistries used for quantitative shot-

gun proteomics are dimethyl [25], isobaric tags for relative and

absolute quantification (iTRAQ) [26], and tandem mass tags (TMT)

[27] chemical labels. Similar to ICAT, quantification using dimeth-

yl label is performed at the MS1 level, whereas quantification using

iTRAQ and TMT labels is carried out by the comparison of the

relative intensities of MS/MS signature ions at the MS2 level,

released during peptide fragmentation in tandem mass spectra

(Fig. 1d). These methods allow for multiplexing several (usually up

to eight) different samples in a single experiment and are based on

the use of isobaric reagents that label primary amines in the

peptides (N termini and the epsilon amino group of the lysine

side chain). ICAT, dimethyl, iTRAQ, and TMT labeling can be

readily applied to almost all types of sample, including tissue

samples from animal models and patient biopsies. This constitutes

a significant advantage over approaches based on the metabolic

incorporation of isotopic labels, described elsewhere. With respect

to sample preparation using dimethyl, iTRAQ, and TMT labels,

protein samples from different treatments or conditions are

digested, labeled separately with different tags, and then com-

bined. The pooled peptide mixture is then analyzed by LC–MS/MS

to provide both peptide identification and relative quantification.

A large number of studies applying iTRAQ to oncoproteomics have

been reported. De Souza and colleagues used iTRAQ in combina-

tion with cICAT labeling to define nine potential biomarkers

associated with endometrial cancer [28]. Calderón-González and

colleagues applied iTRAQ methodology to determine the protein

expression profile of four different breast cancer cell lines (MCF7,

MDA-MB-231, SK-BR-3, and T47D) in comparison to a MCF-10A

nontumorigenic control cell line, with the aim of discovering

novel biomarkers for the early detection of breast cancer [29].

All breast cancer cell lines shared 78 overexpressed proteins and

128 underexpressed proteins, mainly related to metabolic path-

ways and the generation of energy through anaerobic glycolysis

instead of oxidative phosphorylation; all traits related to the

Warburg effect [30]. Consequently, a set of six biomarkers was

proposed to be of potential use for the diagnosis and treatment of

breast cancer. In addition, the authors indicated panels of bio-

markers found exclusively in each breast cancer cell line that can

be used for the classification of different subtypes of the disease.

An alternative stable isotope labeling approach is metabolic

labeling. Metabolic labeling has been shown to also provide pre-

cise quantification because the labels are incorporated into live
tio of ‘light’ and ‘heavy’ thiol-containing peptides is calculated between two
rmed at the peptide level using isobaric tags for relative and absolute

rotein abundances are measured in multiple samples by calculating the ratios

porter ions at MS2 level (114-117 for iTRAQ and 126-129 for TMT) in the same

tabolic labeling method, proteins from two (or more) populations of cells are
 The relative abundances are determined by comparing ‘light’ and ‘heavy’

 are based on the comparison of precursor ion intensities or spectral counting

ch, a ‘heavy’ standard peptide is spiked into the protein sample at a known

o the spiked ‘heavy’ peptide. Quantification is performed on the basis of the
fined fragment ions are allowed to pass to the detector (g).
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cells before any handling of the protein samples. One of the most

popular commercial techniques characterized by its effectiveness

and reproducibility is stable isotope labeling with amino acids in

cell culture (SILAC) (Fig. 1e) [31]. In this method, cells are grown

under different experimental conditions separately in culture

media containing distinctive isotope-labeled lysine and arginine

amino acids, resulting in ‘light’ (Arg-0 or Lys-0), ‘medium’ (Arg-6

or Lys-4), or ‘heavy’ (Arg-10 or Lys-8) forms of proteins in each

experimental condition. The use of modified lysine and arginine

ensures that peptides derived from trypsin digestion contain one

labeled amino acid, which results in a predictable mass increase.

Cells are typically cultured in isotopically defined media for several

weeks to ensure that stable isotope-labeled amino acids are entirely

incorporated into the proteome. Labeled proteins are extracted

from cells, mixed, subjected to trypsin digestion, and finally those

that are SILAC labeled are analyzed by LC–MS/MS. Relative quan-

tification is accomplished by specific software that compares the

intensities of the isotope clusters of the same peptide labeled with

‘light’, ‘medium’, and ‘heavy’ forms. SILAC is similar to ICAT in so

far as the quantification is performed at the MS1 level.

Ren and colleagues used SILAC-based quantitative proteomics

to study changes associated with hepatocellular carcinoma (HCC)

by comparing the proteomes of the HepG2 liver cancer cell line

and an immortalized normal hepatic cell line, L02 [32]. Among 63

differentially expressed proteins identified, phosphoglycerate mu-

tase 1 (PGAM1) was identified as the most upregulated protein in

HepG2 cells and was subsequently validated by reverse transcrip-

tase (RT)-PCR and western blotting analyses, where the enzyme

was also found overexpressed in approximately 67% (36/54) of

HCC samples compared with normal liver tissue controls. The

study showed that PGAM1 can have an important role in hepa-

tocarcinogenesis and highlights the potential use of PGAM1 both

as a diagnostic biomarker and therapeutic target.

Using the same quantitative approach, Zhou and colleagues

performed a study that aimed to identify proteins regulated by the

treatment of MDA-MB-231 human breast cancer cells with sub-

eroylanilide hydroxamic acid (SAHA), a histone deacetylase

(HDAC) inhibitor [33]. By combining parallel western-blot analy-

sis and a SILAC-based quantitative MS approach, they discovered

that the treatment of MDA-MB-231 with SAHA increased the

lysine acetylation of 61 proteins, including both histone and

nonhistone proteins. A number of these proteins had not previ-

ously been described as targets of HDAC inhibitors. Furthermore,

the authors showed that lysine acetylation was sustained with

prolonged treatment, indicating the potential effectiveness of

SAHA treatment in cancer therapy.

Another recent study using SILAC-based quantitative proteo-

mics demonstrated that sensitivity to the chemotherapeutic drug

paclitaxel (PTX) in multiple cancer cell lines was related to levels of

the tumor suppressor programmed cell death 4 (PDCD4); and

levels of this protein in lung cancer tissues was positively correlat-

ed with a better prognosis in patients treated with PTX [34].

In recent years, advances in MS instrumentation and specific

computational analysis tools have revealed the potential of label-

free quantification of shotgun proteomic data as an alternative

to chemical and metabolic labeling techniques [35]. Advantages

of label-free quantification include the relative simplicity and

low costs associated with the technique. Specifically, the use of
268 www.drugdiscoverytoday.com
label-free methods can avoid some limitations found in labeling-

based methods, such as the additional steps required for sample

preparation; the cost of labeling reagents; the limitation of sample

numbers when multiplexing; and the amount of sample that can

be analyzed. Two methods exist for estimating the relative abun-

dance of a protein in multiple samples during label-free quantifi-

cation. The first method, known as spectral counting, is based on

the observation that more abundant peptides are sampled more

frequently by MS than those of lower abundance. That is, the

number of MS/MS spectra acquired for a given peptide is a function

of its abundance in the sample [36]. The second method is based

on the measure of ion intensities over a chromatographic elution

profile observed in MS1 scans, where changes in protein abun-

dance are estimated by comparing peptide intensities between

different samples [37] (Fig. 1f).

Using a label-free approach, Winiewski and colleagues reported

the quantification of 7576 proteins extracted from microdissected

CRC samples and the identification of 1808 proteins that showed

differential expression levels between normal and cancer tissues

[38]. A label-free approach was also used in the investigation of

protein markers associated with lymph node metastasis in CRC

[39] and for the identification of candidate biomarkers present in

the serum of patients with HCC [40].

Analyzing the subproteome of tumor cells, Wang and Hanash

presented a method for analyzing the abundance of cell surface

proteins based on the enrichment of surface membrane proteins

by biotin labeling, followed by affinity chromatography, protein

fractionation by reversed phase liquid chromatography (RPLC),

and label-free absolute quantification [41]. This approach has

provided valuable insights into how the cell surface proteome is

regulated and how it changes in response to intracellular and

extracellular stimuli.

Cancer PTM analysis: glycoproteomics and
phosphoproteomics
By integrating data from the so-called ‘omics’ approaches, one

might expect a comprehensive molecular profiling of oncogenic

processes to be carried out in a feasible timescale [42]. However,

even with improvements in LC–MS/MS instrumentation over the

past decade, it remains a considerable challenge to detect and

measure protein (micro) heterogeneities, such as protein PTMs

that arise during and after protein synthesis, and which are, in

many cases, of more functional significance than protein abun-

dance per se. Given that PTMs are cellular events that occur at

relatively low levels, their detection by MS involves specific meth-

ods for the enrichment of the modified protein and/or peptide

population before MS analysis. Proteomics methods focused on

the analysis of PTMs have benefited from improvements in not

only MS instrumentation, but also protocols used to enrich for

modified proteins and peptides. Below, we review approaches

available to study glycosylation and phosphorylation, two key

PTMs related to important signaling events in cancer.

Glycoproteomics and drug discovery
Protein glycosylation is an enzymatic process that is part of the

secretory machinery of eukaryotic cells and occurs in the lumen

of the endoplasmic reticulum and the Golgi apparatus, where

glycan moieties are transferred by glycosyltransferases to nitrogen
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(N-glycosylation) or oxygen (O-glycosylation) atoms of asparagine

or serine/threonine amino acid side chains, respectively [43]. In

the case of N-linked glycans, this process is highly site specific,

occurring at a consensus motif formed by the triplet amino

acid sequence Asn-Xaa-Ser/Thr (where Xaa could be any

amino acid, except proline). Glycans have both important struc-

tural and biochemical roles, and are involved in many cellular

processes, including direction of intra- and/or extracellular

trafficking of glycoconjugates; modulation of cell adhesion and

signaling; and regulation of cell proliferation and differentiation

[43,44].

Most mammalian proteins are post-translationally modified

and, even though certain modifications can be predicted by bio-

informatic analysis of cDNA sequences, the extent and complexity

of a given PTM, such as glycosylation, is almost unpredictable

based solely on in silico analysis. Furthermore, the actual glycan

diversity of a given glycoprotein can vary by several orders of

magnitude depending on the utilization of glycosylation motifs,

resulting in the generation of distinct glycoforms and/or the

diversification of structural isomers by differences in constitution-

al isomers and/or linkage position among glycan monomers.

These observations illustrate the inherent complexity associated

with cancer-related (glyco) proteins as one of the main challenges

in identifying reliable biomarkers.

Given that several fine-tuning mechanisms are altered upon

oncogenesis, one might expect that significant changes in com-

plex biological processes are propagated by changes affecting

glycans and/or glycoproteins. Indeed, the increase in glycosyl-

transferase expression together with their Golgi localization is

correlated with tumor transformation and progression in different

cancers [45]. Moreover, specific glycan structures have been iden-

tified by MS as being associated with the degree of tumor malig-

nancy [46–48]. Champattanachai and colleagues showed that

aberrant protein O-GlcNAcylation is associated with malignancy

in primary breast tumors, because O-GlcNAc transferase knock-

down resulted in the inhibition of anchorage-independent growth

in vitro [47]. In fact, more than half of cancer biomarkers discov-

ered to date are glycosylated proteins, and the use of high-

throughput approaches based on proteomics and MS have been

successful in defining new biomarkers of this type [48,49]. More-

over, such approaches have also allowed researchers to explore

qualitative and quantitative differences in the well-established

cancer biomarkers, such as the N-glycans from the prostate-specific

antigen (PSA) [46].

Given that sialylated glycoproteins are strongly correlated with

tumor progression, Zhang and colleagues developed a chemical

strategy for the determination of site-specific N-sialoglycan occu-

pancy rates on the basis of specific oxidation of dihydroxyl groups

from sialic acid [48]. The authors performed a high-throughput

analysis of the N-sialoglycan occupancy rates in hepatocellular

carcinoma and human liver tissues and found 76 N-sialoglycosites

with occupancy rates higher than twofold compared with normal

tissue.

Cell surface proteins are among the most variable protein

groups within mammalian cells [50]. Given that several cell surface

mammalian proteins are glycosylated, proteomic studies aiming

to describe cancer-associated proteins have taken advantage of this

feature by including an enrichment step in their experimental
protocols to perform selective capture of glycosylated proteins in

primary cultured tumors or cell lines. Among the experimental

approaches that have been commonly used in glycoproteomics,

chemical labeling of cell surface proteins and lectin capturing have

been used with promising results [51,52].

Recently, Bausch-Fluck and colleagues reported a comprehen-

sive MS-derived cell surface protein atlas, analyzing over 70 mam-

malian cell types, including cancer cells. Among the 1492

identified proteins, the Cell Surface Protein Atlas (CSPA) identified

several N-glycosylated cell surface protein-specific markers, such as

CD30 on the Hodgkin lymphoma cell lines and CD172a on

glioblastoma cells [52].

Given that many clinically relevant proteins are of low abun-

dance, the enrichment strategy has the main advantage of lower-

ing the dynamic range of protein concentration, avoiding

sampling of highly abundant or contaminant proteins. Tan and

colleagues used a lectin-based enrichment strategy in combination

with peptide labeling for relative quantitation to perform a large-

scale analysis of core-fucosylated glycopeptides derived from se-

rum samples from patients with pancreatic cancer [53]. It was

reported that, out of the 322 identified proteins, eight exhibited

significantly altered expression levels and, thus, are potential

markers for pancreatic cancer.

Vakhrushev and colleagues developed a method for the preci-

sion mapping of the human O-GalNAc glycoproteome, which has

been recently used to probe the O-glycoproteome of gastric cancer

cell lines (AGS and MKN45) for potential biomarkers [54]. The

authors successfully identified nearly 500 O-glycoproteins in

gastric cancer cell lines as well as 26 exclusive O-glycoproteins

in the serum of patients with gastric cancer. Comparison of the

O-glycoproteome from the gastric cancer cell lines with a previous

O-glycoproteome set, derived from 12 human cancer cell lines

from different organs, enabled the identification of a new subset of

175 O-glycoproteins and O-glycosites that had not been reported

previously.

Phosphoproteomics and drug discovery
Protein phosphorylation has a paramount role in modifying pro-

teins in a reversible and highly dynamic, transient fashion, and

modulates several aspects of protein structure and function [55].

The phosphorylation state of any given protein is a result of a

dynamic interplay between protein kinase and phosphatase activ-

ities, which gives rise to the substoichiometric nature of protein

phosphorylation, whereby specific sites can be phosphorylated

from <1% to >90% [56]. Importantly, dysregulation of protein

phosphorylation is a key driver of the cancer cell phenotype, and

the desire to understand the aberrant global phosphorylation

events observed in cancer has made phosphorylation one of the

best-studied PTMs. Impairment in signaling networks resulting

from overexpression of kinases, mutation of their corresponding

genes, as well as altered negative regulatory mechanisms,

have been recognized as ubiquitous features in several cancer

types [57–59]. Moreover, multiple oncogenes and tumor suppres-

sors driving dysregulated protein phosphorylation pathways have

been thoroughly investigated as drug targets. Indeed, drugs target-

ing protein kinases are one of the most promising group of

compounds currently available for cancer therapy [57,60,61], even

though adaptive signaling changes frequently lead to activation of
www.drugdiscoverytoday.com 269
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alternative signaling networks, resulting in drug resistance and,

ultimately, tumor relapse [62].

Analysis of phosphorylation is particularly dependent on an

effective strategy for enriching phosphorylated peptides because

of the substoichiometric nature of the modification, and the

behavior of phosphopeptides within the MS. The negative charge

of the phosphate group can be exploited to isolate phospho-Ser

(pSer), phospho-Thr (pThr), and phospho-Tyrosine (pTyr)-con-

taining peptides via selective binding to titanium-dioxide beads

(TiO2). Alternatively, phosphopeptides can be retained on immo-

bilized metal affinity chromatography (IMAC) resin derivatized

with iron (Fe3+). However, pTyr sites are typically under-repre-

sented with this approach, because of the comparative infrequen-

cy of the modification compared with pSer and pThr. Therefore,

for pTyr analysis, peptides are typically enriched using immunoaf-

finity-based methods employing panspecific anti-pTyr antibodies

[56,63].

Sharma and colleagues developed a label-free approach to

quantify phosphorylation peptides and determine their fractional

occupancy in complex samples [64]. This strategy allowed for the

identification of over 50 000 distinct phosphorylated peptides in

HeLa S3 cell lysates. Interestingly, proteins phosphorylated on

tyrosine residues were, on average, more abundant compared with

the entire proteome. This observation led to the proposition that

tyrosine phosphorylation acts as a separate functional regulatory

post-translational modification in eukaryotic proteomes.

Using a ‘multi-omics’ approach, Smit and colleagues identified

targets whose inhibition would increase the toxicity of the BRAF

enzyme inhibitor vemurafenib toward melanoma cells [65]. As

expected, treatment with vemurafenib led to the downregulation

of phosphorylation within the mitogen-activated protein kinase

(MAPK) pathway. Furthermore, out of approximately 5700 identi-

fied proteins and approximately 11 500 phosphosites, the authors

found that the negative regulator of Rho-associated, coiled-coil

containing protein kinase 1 (ROCK1) kinase, Rnd3, was down-

regulated, which pointed to ROCK1 as a potential combinatorial

drug target for BRAF mutant melanoma. This was subsequently

corroborated by gene-silencing experiments.

To gain a molecular understanding of the mechanisms by which

EGFRvIII acts in glioblastoma multiforme, Huang and colleagues

performed a large-scale analysis of EGFRvIII-activated phospho-

tyrosine-mediated signaling pathways by using iTRAQ labeling

followed by pTyr and IMAC phospho-enrichments [66]. The

authors identified and quantified 99 phosphorylation sites on

69 proteins and found that the activating phosphorylation site

on the c-Met receptor was highly responsive to EGFRvIII levels,

indicating cross-activation of the c-Met receptor tyrosine kinase by

EGFRvIII. A combined treatment regimen using a c-Met kinase

inhibitor and either an EGFR kinase inhibitor or cisplatin, resulted

in enhanced cytotoxicity toward EGFRvIII-expressing cells com-

pared with treatment with either compound alone.

More recently, Zhang and colleagues described a robust experi-

mental framework and associated error model for iTRAQ-based

quantification on an Orbitrap MS [67]. Their experimental model

focused on the role of the Fms-like tyrosine kinase 3 (FLT3)

receptor tyrosine kinase, an important receptor in normal hemato-

poietic development and leukemogenesis. Point mutations within

the activation loop and in-frame tandem duplications of the
270 www.drugdiscoverytoday.com
juxtamembrane domain represent the most frequent molecular

abnormalities observed in acute myeloid leukemia. Interestingly,

these gain-of-function mutations correlated with different clinical

outcomes, suggesting that signals from constitutive FLT3 mutants

activate different downstream targets. Application of this error

model to quantitative proteomics data for FLT3 signaling provided

evidence that phosphorylation of tyrosine phosphatase SHP1

abrogates the transformative potential, but not overall kinase

activity of FLT3-D835Y in acute myeloid leukemia.

Despite much technological and methodological progress in the

field, the higher amount of starting material compared with the

study of other PTMs, such as glycosylation, and the transient

nature of phosphorylation are still among the main challenges

of current phosphoproteomic approaches in cancer biology.

Secretomics and drug discovery
Proteins secreted from cells into the extracellular environment

have an important role in many physiological and pathological

processes. In cancer, it has been observed that the composition of

secreted proteins is different compared with normal tissue, which

makes them an important source for cancer biomarker and/or drug

target discovery [68,69]. Thus, systemic experimental approaches

aimed at characterizing cell secretomes provide important quali-

tative and quantitative evidence for understanding the process of

tumor biology [70].

Stromal cells are often recruited by tumor cells to participate in

tumorigenic development by inducing the production and release

of molecular signals responsible for tumor progression, such as

cellular growth factors, and by facilitating dispersion of tumor cells

through the activity of proteases that degrade the extracellular

matrix [71–73]. In this process, the secretion of specific molecules

by tumor cells can act to drive cell signaling events contributing to

the direct or indirect development and proliferation of cancer cells

[73].

In addition, it is known that by secreting molecular factors, such

as VEGF and proteases, tumor cells can mobilize noncancer bone

marrow hematopoietic precursor cells to specific sites creating a

suitable environment known as the premetastatic niche, into

which tumor cells are able to locate and multiply [74].

Obenauf and colleagues showed that melanoma and adenocar-

cinoma cells submitted to BRAF, anaplastic lymphoma kinase

(ALK), or EGFR kinase inhibitor therapy were able to induce a

complex network of secreted factors promoting proliferation,

migration, and metastasis of drug-resistant cancer cell clones.

These factors also increased survival and suppressed the apoptotic

activity of drug-sensitive tumor cells, contributing to rapid tumor

progression [75].

Therefore, secretome analysis is of interest from the perspective

of understanding the repertoire of factors potentially involved in

the biochemical events associated with tumorigenesis [76,77] as

well as for understanding the cellular and molecular complexity of

the tumor microenvironment, and for the identification of factors

contributing to metastasis.

Intracellular peptidomics
A promising area of investigation that has not yet been extensively

explored in the area of cancer proteomics is the characterization

of the intracellular peptidome. Uncontrolled cell growth and
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near-constant proliferation and division of tumor cells require

extensive protein degradation by proteasomes. In addition, it

has been suggested that the proteasome has an extensive role in

regulating the homeostasis of the intracellular peptidome and its

deregulation has been suggested to be associated with cancer

development [78,79]. In this regard, proteasome inhibitors, such

as bortezomib and carfilzomib, have been used for the treatment of

patients with multiple myeloma and mantle cell lymphoma, as

antitumor agents that are able to regulate uncontrolled cell growth

and induce apoptosis in several tumor cells [80,81]. Moreover,

there is evidence that certain intracellular peptides have biological

activities that could be exploited in the search for novel anticancer

agents. For example, it was recently shown that the peptide

WELVVLGKL (pep5) derived from G1/S-specific cyclin-D2 inhib-

ited proteasome activity and induced cell death in several tumor

cells, and reduced the volume of rat C6 glioblastoma when fused to

a cell penetrating peptide (pep5-cpp) [82]. Therefore, intracellular

peptidome mapping has the potential to identify not only poten-

tial biomarkers, but also novel bioactive peptides that can be

exploited as new therapeutic targets.

Protein–protein interactomics and pathway analysis
In conventional MS-based proteomic workflows, the first step in

sample preparation is the solubilization of proteins in the sample.

Typically, highly denaturing conditions are used with the aim of

solubilizing all of the proteins in the sample. However, protein

function can be regulated independently of abundance, by associ-

ation with other proteins and/or sequestration to specific subcel-

lular localizations, and these events cannot be captured by

conventional proteomic approaches. By using less stringent lysis

conditions in combination with strategies to isolate specific pro-

teins of interest (e.g., by immunoprecipitation, or epitope tagging

and affinity purification) it is possible to study specific subpro-

teomes with the aim of elucidating the regulation of discrete

functional units underpinning cellular processes of interest.

One example of this approach is the mapping of protein–protein

interactions (PPI), as used in ‘interactome’ mapping studies, which

have revealed important information on disease biology and,

consequently, therapeutically relevant disease-associated proteins

[83,84].

Interactome studies can provide insights into protein regulation

and/or function in different disease states, which is particularly

important for improving understanding of the molecular mecha-

nisms underpinning events such as proliferation, migration, and

angiogenesis. Targeting PPIs involved in regulating these processes

represents an attractive avenue for the design of novel therapeutic

strategies and less toxic anticancer drugs [85].

Similar to the genome and transcriptome databases, proteome

expression database repositories (Table 1) have been devised in an

attempt to make publicly available the massive amount of proteo-

mic and PPI data from cell lines, biological fluids, different animal

models, and clinical samples. Allied with bioinformatic tools, it is

possible to mine the data in these repositories to identify and

extract relations and patterns in the data that are not apparent in

individual experiments, to formulate new, testable hypotheses to

direct further research. The extensive data provided by the prote-

omic analysis of cancer cell lines and clinical samples encompass-

ing different cancer types allow for the comparison of PPI from
samples from both patients and healthy individuals, and from

disease and normal cells. These analyses could lead to the identifi-

cation of disruptions and abnormalities in specific PPIs of different

signaling networks in different cancer types [86]. In addition, PPI

analysis of clinical samples or cells from different classes of cancer

treated with different drugs could also provide important infor-

mation on the drug action, effectiveness, and resistance.

Cancer has been described as a disease of pathways [1,73], and it

has been proposed that drug-discovery projects should shift from

being protein-centric to being pathway-centric [87,88]. Indeed, it

has been observed that patients with the same type of cancer

typically show differences in protein expression and activation of

specific oncogenic kinases [89–91] Conversely, It has been ob-

served that, when compared with individual marker genes, protein

subnetworks are more robust classifiers of cancer phenotype, and

network-based classification achieves higher accuracy in predic-

tion of therapeutic response [89,92]. Therefore, despite being

challenging, there is clearly utility in mapping and identifying

the pathways that lead to disease progression and metastasis.

With respect to targeting these aberrantly activated signaling

networks, although most cancer drugs have been developed to-

ward specific molecular targets, many of them target multiple

proteins. For example, the multi-kinase inhibitors dasatinib, nilo-

tinib, and imatinib, which were rationally designed to target BCR-

ABL, have also been shown to inhibit other kinases, including

platelet-derived growth factor receptor (PDGFR), discoidin do-

main receptor (DDRs), c-KIT, and SRC family kinases [22,93,94].

Interestingly, combination therapy with multiple drugs instead of

a monotherapy targeting specific proteins has been more success-

ful for the treatment of patients with cancer and also for dimin-

ishing the risk of drug resistance [73,95]. Proteomics has been

useful in not only identifying new therapeutic targets, but also

identifying network-level effects of different therapeutic agents.

The SILAC-aided proteomic and phosphoproteomic analysis of

the effect of heat shock protein (HSP)-90 inhibitors 17-DMAG and

geldanamycin on cancer cell lines showed multiple effects on

several protein levels and multiple cellular processes, such as

protein synthesis, protein degradation, cell cycle, and apoptosis

[96,97]. Moreover, proteomic follow-up analysis of oncogenic

signaling pathways in patients with cancer under specific drug

therapy or cancer cell lines and tissues treated with different drugs

has the potential to reveal unanticipated ‘off-target’ effects and

new drug-specific pathway biomarkers that could guide clinical

treatment decisions [22,94,98,99].

Targeted proteomic approaches
Targeted proteomic workflows are emerging as a complementary

tool to discovery proteomics typified by the workflows described in

the previous sections. Targeted proteomics differs from discovery

proteomics in that it requires prior knowledge of the analytes to be

studied. Hence, it is typically used for hypothesis-driven studies,

often focusing on a particular set of peptides known to be derived

from a given biological sample. Targeted proteomics typically uses

an approach known as multiple reaction monitoring (MRM) or

selected reaction monitoring (SRM), which is implemented on a

triple-quadrupole MS (reviewed in [100]). A key advantage of

MRM/SRM assays is that, by setting the MS to detect only a set

of predefined analytes, it is possible to detect reproducibly analytes
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TABLE 1

Database repositories containing proteomic and interactomic data

Database Description Website source

CCSB Interactome Database An interactome database comprising human, virus,

plant, bacteria, warm, and yeast PPIs

http://interactome.dfci.harvard.edu/

Database of Interacting Proteins (DIP) Database combining both manually and automatic

curated information creating a consistent set of PPIs

http://dip.doe-mbi.ucla.edu

Human Protein Reference Database (HPRD) A centralized platform of curated proteomic data to
depict and integrate information pertaining to domain

architecture, PTMs, interaction networks, and disease

association for each protein in the human proteome

http://www.hprd.org

InnateDB Database with improved coverage of innate immunity
interactome, integrating interactions and pathways

from public databases with manually curated data into a

centralized resource

http://www.innatedb.ca

IntAct An open-source database system providing tools for
analyses of molecular interaction data derived from

literature curation or direct user submissions

http://www.ebi.ac.uk/intact

International Molecule Exchange (IMEx) consortium An international collaboration between major

interaction databases to combine curation efforts for

increasing coverage and providing a nonredundant set
of protein interactions in a single search interface

http://www.imexconsortium.org/

MatrixDB A database focused on interactions established by

extracellular proteins and polysaccharides; MatrixDB is a

member of the IMEx consortium

http://matrixdb.ibcp.fr

Online predicted human interaction database – OPHID Database integrating experimentally validated and

predicted protein interactions for humans,

Saccharomyces cerevisiae, Caenorhabditis elegans,

Drosophila melanogaster, and Mus musculus

http://ophid.utoronto.ca

Proteopedia A wiki encyclopedia of structural and functional
information about protein, RNA, DNA, and other

macromolecules, and their assemblies and interactions

with small molecules

http://proteopedia.org/

The Biological General Repository for Interaction
Databases (BioGRID)

A comprehensive repository database for protein and
genetic interactions, chemical associations, and PTMs

from major model organism species, compiled through

literature curation

http://www.thebiogrid.org

The microbial protein interation database (MPIDB) Database focused on microbial protein interactions
curated from literature or imported from other

databases

http://www.jcvi.org/mpidb

The PRoteome IDEntifications (PRIDE) A public data repository for MS-based proteomics data,

including protein and peptide identifications, as well as
PTMs and supporting spectral evidence

http://www.ebi.ac.uk/pride

UniPep A Swiss/American project to provide access to

proteomics data from the Serum Biomarker group,

offering a library of putative glycopeptides and
theoretical proteotypic peptides

http://www.unipep.org
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of low abundance in comparatively complex mixtures, where

discovery proteomics approaches would either result in the ana-

lyte not being detected at all, or would detect it in only a subset of

experiments. Additionally, because analytes are defined on the

basis of their intact mass and multiple fragment ions, the assays are

highly specific. Furthermore, known concentrations of isotopic-

labeled heavy peptides (with either 13C- or 15N-containing amino

acids) can be spiked into the sample to facilitate either relative or

absolute quantification (Fig. 1g).

MRM/SRM assays have been successfully applied to samples

ranging from cells and biopsy tissues to several kinds of biological

fluid [100–104]. Recently, Sjöström and colleagues reported the
272 www.drugdiscoverytoday.com
use of combined strategies (shotgun and SRM) for breast cancer

biomarker discovery [105]. After enriching breast tumor samples

for N-glycopeptides, the authors compiled a list of proteins of

interest and performed a multiplexed targeted analysis using

SRM, resulting in the identification of ten proteins that were

consistently differentially regulated between tumor samples.

Importantly, SRM has been successfully applied to complex

samples with protein concentrations that vary across many orders

of magnitude, including human plasma. Indeed, Cima and col-

leagues measured a panel of candidate biomarkers for prostate

cancer through a set of serum samples from over 100 individuals

[104]. The identified protein signatures increased both sensitivity

http://interactome.dfci.harvard.edu/
http://dip.doe-mbi.ucla.edu/
http://www.hprd.org/
http://www.innatedb.ca/
http://www.ebi.ac.uk/intact
http://www.imexconsortium.org/
http://matrixdb.ibcp.fr/
http://ophid.utoronto.ca/
http://proteopedia.org/
http://www.thebiogrid.org/
http://www.jcvi.org/mpidb
http://www.ebi.ac.uk/pride
http://www.unipep.org/
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and specificity of prostate cancer detection when compared with

PSA measurements currently used as a diagnostic serum biomark-

er for prostate cancer.

Martı́nez-Aguilar and colleagues used SRM for the profiling of

isoform-specific expression of the calcium-binding protein S100 in

the three most common tumors of the thyroid gland (follicular

adenoma, follicular thyroid carcinoma, and papillary thyroid

carcinoma) in comparison with nine normal thyroid tissues

[106]. Results from SRM analyses were also confirmed by metabolic

(SILAC) labeling and western-blot analysis and allowed the iden-

tification of S100A31 as a novel candidate papillary thyroid carci-

noma biomarker and the utility of S100A6, S100A4, and annexin

A1 to discriminate follicular and papillary thyroid tumors.

A robust pipeline based on targeted proteomics for biomarker

verification in plasma samples was recently developed and applied

to the investigation of lung cancer biomarker candidates. The
TABLE 2

International large-scale omics initiatives

Initiative name Description 

The Human Protein Atlas (HPA) Focused on expression and 

human proteins based on RN

data. The cancer atlas, a subc
contains information on pro

levels in tumor cells and pro

information for identification
potential cancer biomarkers

Clinical Proteomic Tumor Analysis Consortium

(CPTAC)

Integrative effort joining gen

proteomic data to detect pr

from alterations in the canc

Global Cancer Genomics Consortium (GCGC) Focused on investigation of
proteomes of cancer specim

molecular drivers of cancer 

cellular evidence of drug int

sensitivity, or resistance

METAcancer Consortium Aimed at identification of al

metabolites and metabolic p

breast cancer tissues throug

metabolomics; molecular cla
disease based on altered lev

metabolites, and identificati

prognostic and predictive b

German Cancer Consortium (DKTK) Focused on establishing inte
research centers to improve

prevention and diagnosis as

development of more speci

The Biomarker Consortium Aimed at acceleration of de
biomarker-based technologi

drug development, preventi

diagnosis and treatment

Human Surfaceome Atlas A repository for data repres

surface protein repertoire of
31 mouse cell types genera

quantitative MS

Genome Medicine Database of Japan

Proteomics (GeMDBJ)

Focused on identification of

associated with particular ca
prognostic markers; proteom

surgically resected tissues an

cultured cells of various ma

well as corresponding biolo
clinicopathological data
authors reported a total of 17 proteins as tumor markers for

non-small cell lung cancer (NSCLC), including a novel plasma-

based biomarker, the cell-adhesion protein zyxin [107].

Although they have clear utility in primary research, targeted

proteomic strategies could also provide the platform that is able to

take MS from the research laboratory into the clinical diagnostic

setting. The ability to measure the abundance of analytes in

complex biological samples such as serum, the high degree of

specificity, the inherent reproducibility across technical replicates,

and the relatively low cost of instrumentation, make targeted

proteomics more suited to clinical diagnostics than are discovery

proteomic approaches. Moreover, the ability to multiplex analy-

ses, and the fact that assays do not rely on the development of

specific antibodies, means that SRM/MRM-based assays have con-

siderable potential as important diagnostic tools in the context of

precision medicine.
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Challenges for proteomics in cancer drug discovery
Current state-of-the-art proteomic technologies have made it pos-

sible to perform in-depth profiling of the cancer proteome with

great reliability. With the application of specific workflows, it is

possible to apply modern proteomics to interrogate cellular con-

stituents, secreted proteins, PTMs, and PPIs. Mapping of altered

signaling pathways and identification of alterations in protein

expression that lead to tumor initiation, invasion, and metastasis

have provided important clues to researchers for the discovery and

design of more specific biomarker targets for diagnosis and treat-

ment. However, despite these successes, more widespread adop-

tion of the technology in cancer research is still hampered by

several significant technical challenges. Despite improvements in

instrumentation and sample fractionation procedures, the vast

dynamic range of protein abundance coupled both protein iso-

form and disease heterogeneity still results in significant chal-

lenges. Moreover, different sample types can pose specific

challenges to proteomic analyses, and sample preparation proce-

dures can significantly alter the quality of data that can be

obtained from analyses. For example, proteomic and phospho-

proteomic analysis of breast cancer tumor samples has shown that

levels of protein and phosphoprotein are affected by biospecimen

type and pre-analytical sample manipulation procedures [108]. In

addition, proteomics-based studies require specialized equipment

and infrastructure, as well as trained personnel for sample prepa-

ration, processing, and analysis [109,110]. Moreover, a remaining

bottleneck in most proteomic studies is the analysis of the large
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signaling pathways to direct second-round treatment.
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amounts of data generated to isolate biologically meaningful

changes from background noise.

One approach to tackling these problems is the development

of consortiums and initiatives formed by different groups of

laboratories worldwide with different technical platforms to

mine the cancer proteome in an integrative, large-scale, and

collaborative manner (Table 2). By promoting and facilitating

a culture of information sharing, these initiatives have enabled

promising advances in the study and discovery of potential

biomarkers for different types of cancer. Moreover, the multidis-

ciplinary nature of these consortiums connects basic research

with clinical and public health sciences, leading to a rational

workflow focused on a common goal of reducing mortality by

offering more precise and efficacious treatments for patients with

cancer.

Concluding remarks
The application of proteomics to cancer research has provided

invaluable insight into the biological processes that drive the

hallmarks of cancer. Beyond merely cataloguing the proteome,

advances in sample preparation, labeling, and instrumentation

have made it possible to identify cancer-specific changes with

more sensitivity than ever before. By selecting appropriate sam-

ple preparation and analysis approaches, it is possible to tailor

proteomic technologies to study cell signaling networks, func-

tionally important PTMs, PPIs, and protein expression changes.

Although many technical challenges remain, the advent of
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consortium initiatives and proteomic data repositories, along

with bioinformatic tools for mining these data, make it clear that

proteomics will continue to have a key role in the discovery of

both new biomarkers and new therapeutic targets.

However, an interesting question that remains is how this

technology might be applied in the clinic to have a more direct

role in patient management. It is conceivable that targeted

proteomics could have an important role in the emerging preci-

sion medicine approach for cancer treatment, where individual

variation in proteins as well as genes and metabolites are moni-

tored to offer personalized diagnostics and treatment for each

patient [111]. In this scheme, SRM analysis could be used to

screen for the activation of key signaling networks in patient

samples before treatment to direct treatment with mono- or

combination-drug therapy (Fig. 2). Importantly, given that the
emergence of resistance typically limits the durability of treat-

ment response, follow-up screening could be used to identify

network reprogramming events responsible for resistance and

redirect treatment with compounds selective to newly activated

bypass signaling pathways.

Acknowledgments
This work was supported by the Center of Toxins, Immune-

response and Cell Signaling (CeTICS) grant 2013/07467-1 from the

São Paulo Research Foundation (FAPESP). A.Z. is currently

supported by the Young Investigator Grant 2014/06579-3 from

FAPESP. E.S.K. is supported by PhD fellowship grant 2011/11308-0

and M.S.D. is supported by PD fellowship grant 2012/20186-9 from

FAPESP. We thank Emer S. Ferro for insightful and valuable

comments and suggestions on the manuscript.
References
1 Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100, 57–70

2 Burrell, R.A. et al. (2013) The causes and consequences of genetic heterogeneity in

cancer evolution. Nature 501, 338–345

3 Poulikakos, P.I. and Rosen, N. (2011) Mutant BRAF melanomas: dependence and

resistance. Cancer Cell 19, 11–15

4 Camidge, D.R. et al. (2014) Acquired resistance to TKIs in solid tumours: learning

from lung cancer. Nat. Rev. Clin. Oncol. 11, 473–481

5 Ley, T.J. et al. (2008) DNA sequencing of a cytogenetically normal acute myeloid

leukaemia genome. Nature 456, 66–72

6 Hudson, T.J. et al. (2010) International network of cancer genome projects. Nature

464, 993–998

7 Prahallad, A. et al. (2012) Unresponsiveness of colon cancer to BRAF (V600E)

inhibition through feedback activation of EGFR. Nature 483, 100–103

8 De Gruttola, V.G. et al. (2001) Considerations in the evaluation of surrogate

endpoints in clinical trials. Summary of a National Institutes of Health Workshop.

Control Clin. Trials 22, 485–502

9 Domchek, S.M. et al. (2010) Association of risk-reducing surgery in BRCA1 or

BRCA2 mutation carriers with cancer risk and mortality. JAMA 304, 967–975

10 Pao, W. et al. (2004) EGF receptor gene mutations are common in lung cancers

from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and

erlotinib. Proc. Natl Acad. Sci. U. S. A. 101, 13306–13311

11 Danila, D.C. et al. (2011) Circulating tumor cells as biomarkers in prostate cancer.

Clin. Cancer Res. 17, 3903–3912

12 Ofarrell, P.H. (1975) High-resolution 2-dimensional electrophoresis of proteins. J.

Biol. Chem. 250, 4007–4021

13 Fenn, J.B. et al. (1989) Electrospray ionization for mass-spectrometry of large

biomolecules. Science 246, 64–71

14 Hillenkamp, F. et al. (1991) Matrix-assisted laser desorption ionization mass-

spectrometry of biopolymers. Anal. Chem. 63, A1193–A1202

15 Hanash, S.M. et al. (1986) Lineage-related polypeptide markers in acute

lymphoblastic-leukemia detected by two-dimensional gel-electrophoresis. Proc.

Natl. Acad. Sci. U. S. A. 83, 807–811

16 Unlu, M. et al. (1997) Difference gel electrophoresis: a single gel method for

detecting changes in protein extracts. Electrophoresis 18, 2071–2077

17 Zhou, G. et al. (2002) 2D differential in-gel electrophoresis for the identification of

esophageal scans cell cancer-specific protein markers. Mol. Cell. Proteomics 1,

117–124

18 Campostrini, N. et al. (2005) Spot overlapping in two-dimensional maps: a serious

problem ignored for much too long. Proteomics 5, 2385–2395

19 Drews, J. (2000) Drug discovery: a historical perspective. Science 287,

1960–1964

20 Poli, G. et al. (2015) 2D-DIGE proteomic analysis identifies new potential

therapeutic targets for adrenocortical carcinoma. Oncotarget 6, 5695–5706

21 Makarov, A. et al. (2006) Performance evaluation of a hybrid linear ion trap/

orbitrap mass spectrometer. Anal. Chem. 78, 2113–2120

22 Bantscheff, M. et al. (2007) Quantitative chemical proteomics reveals mechanisms

of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044

23 Gygi, S.P. et al. (1999) Quantitative analysis of complex protein mixtures using

isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999
24 Meehan, K.L. and Sadar, M.D. (2004) Quantitative profiling of LNCaP prostate

cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics 4,

1116–1134

25 Boersema, P.J. et al. (2009) Multiplex peptide stable isotope dimethyl labeling for

quantitative proteomics. Nat. Protoc. 4, 484–494

26 Ross, P.L. et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae

using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169

27 Thompson, A. et al. (2003) Tandem mass tags: a novel quantification strategy for

comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75,

1895–1904

28 DeSouza, L. et al. (2005) Search for cancer markers from endometrial tissues using

differentially labeled tags iTRAQ and cICAT with multidimensional liquid

chromatography and tandem mass spectrometry. J. Proteome Res. 4, 377–386
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