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The importance of striving for and maintaining drug-like physicochemical properties during the hit and

lead optimization process is now well documented, and many published studies have suggested optimal

ranges and/or limits for key molecule descriptors such as size, lipophilicity, H-bonding characteristics,

rotatable bond and aromatic ring counts, particularly with regard to the design of orally administered

drugs. The aim of this article is to review various approaches that have been used to represent molecule

properties graphically in the context of oral ‘drug likeness’, with the goal of improving the decision

making of medicinal chemists during the drug discovery process.
Importance of ADME-related physicochemical
properties in medicinal chemistry
Ever since the late 1990s, when the link between the size, lipo-

philicity and H-bonding characteristics of drug molecules and

their oral bioavailability was demonstrated [1–3], numerous stu-

dies have highlighted the importance of physicochemical proper-

ties in defining the drug likeness of molecules. From these studies,

several ‘rules of thumb’ have been formulated to help guide

medicinal chemists in the design and selection of molecules that

should have an increased likelihood of becoming successful oral

drugs. These rules were summarized in a recent publication [4].

Over the past few years, there has been some debate as to how

strictly such rules are being, or should be, applied and whether in

certain cases property limits can be breached [5]. It is apparent,

however, that most drug discovery groups have implemented sets of

rules or guides that are available to chemists during the hit and lead

optimization process and that these rules are often followed strictly.

Visualization of scientific data
Data visualization (i.e. the graphical representation of data to assist

viewers in gaining a better understanding of the underlying pro-

cesses described by the data) is an indispensable part of scientific

study. In the context of modern drug discovery, data visualizedas an

image, chart or plot can provide a simplified view of complex,
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multidimensional phenomena and ideally reveal correlations

between different types of observations. Some visualization tools

also offer the possibility to view the data interactively, which

enables the researcher to gain better insight into the process under

consideration. The visualization of scientific data is also commonly

used inpresentationgraphics to facilitate the communicationofkey

information and scientific results to the reader or viewer.

Many software packages exist, both commercially available and

as freeware, that support the analysis and visualization of scientific

data. These applications range from simple tools such as Microsoft

Excel (http://www.office.microsoft.com/en-us/excel/), and other

spreadsheet programs such as OpenOffice.org Calc (http://www.

openoffice.org/product/calc.html) and Google Docs Spreadsheet

(http://www.docs.google.com/support/bin/topic.py?topic=15115),

to sophisticated data visualization tools such as Spotfire (http://

www.spotfire.tibco.com/), Vortex (http://www.dotmatics.com/

products_vortex.jsp), Miner3D (http://www.miner3d.com/) and

JMP (http://www.jmp.com/index.shtml). The scope of this article,

however, is not to review these in detail (information on such

programs is available from the respective vendors’ web sites).

Scope of this article
This overview focuses on how the above-mentioned ADME-related

rules of thumb can be rendered and presented to a medicinal

chemistry audience in an appropriate graphical representation,

using – for example – colour, shape and size to facilitate the

selection or deselection of molecules during the drug discovery
www.drugdiscoverytoday.com 65
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FIGURE 1

Representative drug property data with examples of simple colour and shape highlighting available in Microsoft Excel 2007: polar surface area (PSA) values as

horizontal bars; molecular weight (Mol Wt) with graphical pies and grey-scale shading; log P with green–yellow–red colouring; and rotatable bond count with

colouring if value is >8.
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process. In many cases, such visualizations are readily implemen-

ted and presented to the chemist via web-based applications.

Simple cell highlighting
Human beings have an innate ability to quickly recognize and

assimilate shapes, patterns and colours. This ability has been

employed for thousands of years, long before the invention of

language, written text and computers. It is known, for example, in

engineering, that an analogue speedometer can be read much

more easily than a digital version.

A simple example of how shape and colour can be employed to

highlight aspects of numerical drug data is shown in Fig. 1.

Whereas purely numerical data requires careful inspection to

identify particular values, the use of shape (bars, pies), shading

or colour can help to draw the viewer’s attention to, in this case,

high or low values.

Traffic light colouring
The familiar ‘traffic light’ colouring of red, amber and green was first

introduced on street lights around 1920 and is now universally

recognizedaround the globe. Becauseof itsubiquitousmeaning, it is

attractive to use the same colours to label molecule properties to

indicate ‘bad’, ‘intermediate’ and ‘good’ values. Such traffic light

colouring has been used to assist in the selection of HTS screening

hits and subsequent leads, profiling of compound libraries and

prioritizing compounds for purchasing [6]. As well as highlighting

suboptimal properties with colour, the individual traffic light values

are used to generate an ‘Oral PhysChem Score’ (Fig. 2) so large

numbersof structurescan beeasily compared.Traffic lightcolouring

has also been used to show the impact of higher molecular weight

and/or c log P on a range of ADMET parameters [7].

Specialized plots
Optimization of a lead into a drug requires the simultaneous

adjustment of several factors. As a result, mechanisms were

invented to display bi-, tri- and multi-variate data in meaningful

graphical representations. Although one might consider scatter

plots and pie charts to be associated with modern presentation

graphics and the computer age, it is interesting to note that these

were, in fact, invented in the 19th century [8]. Several of these

more specialized plots that have been found to be useful when
66 www.drugdiscoverytoday.com
applied to the display of molecule data in the drug discovery

context are discussed in the next section.

Craig plots
One of the most important early examples of a graphical display of

chemical properties was published by Craig in 1971 [9]. Analyses

comparing several substituent constants revealed that the plotting

of Hammett sigma and Hansch hydrophobicity pi descriptors pro-

duced a non-correlated scatter plot, which could serve as a guide for

the synthesis of derivatives designed to cover wide ranges of values

for these parameters. Craig plots are still very much in use: inter-

action with the display, for example, by showing the structures

associated with points, enables the user to see into the process and

hand select bioisosteric alternatives on a rational basis [10] (Fig. 3).

Flower plots
An early example of a graphical display of multiple molecular

properties was published by Martin et al. [11] in 1995. In this case,

‘flower plots’ (Fig. 4) were generated to compare the molecular

diversity of N-substituted glycine libraries with respect to 16 mole-

cule properties, including lipophilicity, shape and branching, and

chemical functionality. In essence, flower plots are bar graphs in

whichthex-axishasbeenwrappedinacircle.Thisenables theviewer

to make rapid comparisons between objects. A modern interpreta-

tion of this radialplot approachhasbeen implementedat Johnson &

Johnson,where ‘piebar charts’ areused to display selectivitydata for

compounds screenedthroughapanelofbiological targetassays [12].

Egg plots
Using literature data on well-absorbed and poorly absorbed drugs,

Egan et al. [13] created a general computational model for human

passive intestinal absorption. This was graphically displayed as a

bi-plot using calculated log P and polar surface area (PSA) as the y-

and x-axes, respectively, overlaid with an ellipse (or egg) represent-

ing the property space occupied by the majority of well-absorbed

compounds (Fig. 5). This provides a simple visual cue for profiling

new compounds in terms of their potential to be orally absorbed.

The direction of movement towards or away from the ‘egg’ can be

used to guide the design of improved analogues. It also reminds

the user about the probabilistic nature of the data, with the lighter

oval on the periphery capturing 95% of the data.
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FIGURE 3

A web-based Craig plot implemented at Novartis enables interactive exploration of substituent property space with respect to hydrophobicity and electronic

properties.
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FIGURE 2

In silico ADME traffic light (TL) colouring for several ADME-related properties [6]. The TL values for the five properties are summed to generate an overall ‘Oral

PhysChem Score’. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. Abbreviations: CLOGP, logarithm of the calculated partition

coefficient; MWcorr, corrected molecular weight; PSA, polar surface area; Rot bonds, number of rotatable bonds.
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FIGURE 4

Flower plots showing 16 different side chain properties to display diversity within N-substituted glycine-based combinatorial libraries.Adapted, with permission,
from Ref. [11]. Copyright 1995 American Chemical Society.
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Oral bioavailability graphs
Another graphical x–y plot to assist in the estimation of oral

bioavailability (%F) was published by Mandagere et al. [14]. In

this case, metabolic stability and Caco-2 cell permeability data

were plotted and areas of the graph defined to indicate low,

medium or high probability of achieving oral bioavailability

(Fig. 6). This model, which was validated with reference drugs,

proved useful in the estimation of the bioavailability of com-

pounds in several species based on their position on the map.

Golden Triangle
The Golden Triangle [15] is a visualization tool to help the simul-

taneous optimization of absorption and clearance of drugs. When

plotting molecular weight versus distribution coefficient at pH 7.4

(log D 7.4) for a series of molecules, it is apparent that compounds

with good permeability and low clearance are concentrated within

a triangular shaped area, called the Golden Triangle (Fig. 7). The
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FIGURE 5

The green ellipse in the egg plot denotes a bioavailable region of property

space with respect to log P and PSA; molecules outside this area might have

bioavailability problems. Adapted, with permission, from Ref. [13]. Copyright
2000 American Chemical Society. Abbreviations: log P, logarithm of the

calculated partition coefficient; PSA, polar surface area.

FIGURE 6

Graphical model to estimate oral bioavailability (F) using metabolic stability
and cell permeability data. Adapted, with permission from, Ref. [14].

Copyright 2002 American Chemical Society. Abbreviations: Papp, apparent

permeability coefficient; t1/2, half-life.
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FIGURE 7

Set of project molecules with their log D and MW values. Molecules with
good permeability (blue circles) are located in the Golden Triangle. Adapted

from Ref. [15], with permission from Elsevier. Abbreviations: MW, molecular

weight; log D 7.4, logarithm of the distribution coefficient at pH 7.4.
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authors suggest using this simple visualization tool to guide the

design of new molecules towards drug-like space.

Face diagrams
An unusual way to visualize multiple molecular properties is to

associate numerical property values with various facial features –

such as the size of the nose or eyes, eye slant, or mouth curve – and

display them as facial diagrams (so-called ‘Chernoff faces’). This

method is based on the ability of a human brain to readily

recognize and compare human faces. A computer program,

FACES, has been described [16] to display 11 physicochemical

properties for a set of molecules encoded into such face diagrams.

With proper encoding, this approach could even offer the possi-

bility of representing molecules with bad ADME properties as sad

faces and molecules with good properties as happy faces.

SARANEA
Lounkine et al. [17] recently presented an interesting approach for

interactive visualization of structure–activity, structure–property

and structure–selectivity relationships. The method integrates

various SAR and structure–selectivity relationship analysis func-

tions and uses a network-like similarity graph data structure for

visualization. The authors named the program SARANEA, which

combines ‘SAR’ and ‘ARANEAE’, the scientific designation of

the order of spiders, because the resulting molecular networks
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A screenshot of an interactive Motion Chart, which allows changes in important mol

TPSA, topological polar surface area; log P, logarithm of the partition coefficient;
resemble spider webs. The tool enables the systematic detection of

activity and selectivity cliffs. The SARANEA Java Program is freely

available for download.

Time series plots
In the drug discovery process, one often needs to analyse changes

of ADME properties as a function of time (so-called ‘time series’).

Typical examples are the improvement of bioavailability, potency

and so on over the course of a drug development project or the

examination of general trends in properties of drugs depending on

their year of launch [18]. The classical way to do such an analysis is

simply to use one of the axes of an x/y plot as a time axis.

Interactive computer graphics, however, offer more sophisticated

ways to visualize time series. A nice example is the free Motion

Chart tool from Google (http://www.code.google.com/apis/

visualization/documentation/gallery/motionchart.html), which

enables the exploration of several indicators over time. Currently,

this type of tool is used mostly in economics and finance (e.g. to

explore the development of share prices or sales), but interactive

time series graphs also offer promising opportunities in supporting

drug discovery projects. An example of such a visualization is

shown in Fig. 8, a screenshot of an interactive graph that enables

exploration of changes in log P, PSA and molecular weight for a

series of molecules active on different targets depending on the

year of publication. A slider at the bottom of the graph allows the
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ecular properties depending on the target and publication year. Abbreviations:

Mol Wt, molecular weight.
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FIGURE 9

Radar plots of molecule properties. The green area represents ‘good’ property space for oral bioavailability, and the blue pentagon represents values of the five

calculated properties for the molecule(s) in question. (a) The profile for an average oral drug. (b) The profile for a sub-optimal lipophilic molecule. (c) The average
properties of compounds in the early-stage Novartis development pipeline during the mid-2000s. (d) The average properties of compounds in the late-stage

Novartis development pipeline during the mid-2000s. Abbreviations: log P, logarithm of the calculated partition coefficient; Mol Wt, molecular weight; PSA, polar

surface area; WS, water solubility score; nrotb, number of rotatable bonds.
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FIGURE 10

Radar plots of two 3000-member Novartis combichem libraries. The blue
pentagon represents the mean of the five calculated properties for the data

set. The dotted lines define the standard deviation in property values. (a) Is a
more recent library with better oral drug properties. Abbreviations: log P,

logarithm of the calculated partition coefficient; Mol Wt, molecular weight;
PSA, polar surface area; WS, water solubility score; nrotb, number of rotatable

bonds.

R
eview

s
�P

O
S
T
S
C
R
E
E
N

view to be changed according to the publication year. Of course,

this type of interactive chart should be manipulated in a ‘live’

environment, either as a web page or as a locally installed stand-

alone program. More and more scientific journals – such as the

Journal of Cheminformatics (http://www.jcheminf.com), the Journal

of Molecular Modeling (http://www.springerlink.com/content/

1610-2940/) and the Internet Journal of Chemistry (http://

www.hackberry.trinity.edu/IJC/) now offer the possibility of

including interactive tools as supporting information, to better

illustrate the trends in data.

Bioavailability radar plots
Another useful mechanism to display the calculated phys-chem

data of molecules in the context of oral drug-like property space is

the ‘radar’ plot (sometimes called a ‘spider’ or ‘cobweb’ plot),

available in various statistics software programs, including MS

Excel software, and in more recent versions of Spotfire Decision

Site.

Figure 9a–d show typical radar plots that can be generated in

this way using five molecular descriptors: calculated log P, mole-

cular weight, PSA [19], number of rotatable bonds and an aqu-

eous solubility score. The green area of the plot defines the ‘oral

drug-like’ limits for the five properties, which are within the

ranges of log P�0.7–5.0; molecular weight 150–500; PSA 20–130;

number of rotatable bonds 0–9; water solubility score 1–3 (1,

highest solubility; 5, lowest solubility). The calculated values for

the compound(s) being analysed are displayed as a blue penta-

gon, which should lie within the green area. Although the initial

radar plots were generated as Excel charts, a Java-based web

version was quickly implemented to take advantage of the online

physicochemical property calculation tools available at Novartis

[20,21].

Figure 9a shows a typical radar plot for an oral drug-like mole-

cule (i.e. the blue pentagon lies well within the green area). This

type of profile is also obtained by taking the average property

values from marketed oral drug data sets (such as reported by Vieth

[22]) or from other collections such as the Comprehensive Med-

icinal Chemistry database from Symyx (http://www.symyx.com/

products/knowledge/medicinal_chem/index_print.jsp). By con-

trast, Fig. 9b is the profile obtained from a higher molecular

weight, lipophilic molecule, which has exceeded the log P limit

and is flagged as such in red.
70 www.drugdiscoverytoday.com
Figure 9c and d describe the average properties of compounds in

the Novartis early- and late-stage development pipeline, respec-

tively, from the mid-2000s. As suggested by Wenlock [23], devel-

opment candidates with molecular weights and log P values

higher than those of marketed oral drugs tend not to survive to

later clinical stages. The radar plots confirm that compounds that

have reached phase II and beyond (Fig. 9d) do seem to have a

profile that is closer to that of marketed oral drugs (Fig. 9a), when

compared to compounds in phase I and preclinical phases (Fig. 9c).

The radar plot concept can also be used to profile other sets of

compounds, such as combinatorial libraries. Figure 10a and b show

two Novartis libraries of 3000 compounds each. In this case, the

standard deviation from the mean of the properties is indicated by

a dotted line, either side of the average values. This gives some

measure of diversity in the libraries with respect to the five proper-

ties. The ‘bad’ library (Fig. 10b) was prepared several years ago,

when it was very common for pharmaceutical companies to gen-

erate high molecular weight, lipophilic combinatorial libraries,

before the impact of molecular properties on drug likeness was

fully realized. The ‘good’ plot (Fig. 10a) is an example of a more

recent library, which does not exceed the parameter limits and

seems more diverse in terms of the standard deviation. Using this

approach, virtual libraries or vendor collections of any size can be

evaluated.
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FIGURE 11

A radar plot of calculated physicochemical descriptors as implemented at
GlaxoSmithKline. A yellow borderline range between the green acceptable

region and unacceptable property space is included in this case.

Abbreviations: Mol Wt, molecular weight; AromR, aromatic ring count; S log P,
logarithm of the calculated partition coefficient; NHs + OHs, number of

hydrogen bond donors; Ns + Os, number of hydrogen bond acceptors.
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FIGURE 12

Food labelling to indicate nutritional content used on supermarket products

(left) together with an analogous chart applied to molecule properties with

traffic light colouring (right). Abbreviations: Mol Wt, molecular weight; c log P,

logarithm of the calculated partition coefficient; Ar rings, aromatic ring count;
HBDs, number of hydrogen bond donors; HBAs, number of hydrogen bond

acceptors.
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The examples above describe sets of ‘real’ compounds, but the

radar plot can be equally useful in the design of new drug mole-

cules. Thus radar plots generated from single virtual molecules or

sets of molecules have been used by medicinal chemists in Novar-

tis to assist the design process by answering questions such as ‘Does

this compound possess an oral drug profile, and if not, which

properties are sub-optimal?’, ‘What effect does this new substitu-

ent have on the overall radar plot?’, ‘How does this scaffold change

effect the lipophilicity and water solubility?’, and so on. Imple-

mentation of the bioavailability plots within the Novartis ‘In Silico

Profiling’ web tool [20] enables easy generation of the plots

together with calculation of several important molecular physi-

cochemical properties and drug transport characteristics. In this

way, chemists can compare compounds within series and link

complex SAR with a graphical view of bioavailability to aid in the

design of better compounds.

Although this implementation of the radar plot uses five parti-

cular parameters, there is no reason why other combinations of

physicochemical properties cannot be used if they are deemed

relevant for oral drug likeness; for example, c log D could replace

c log P or H-bond donor and acceptor counts could be used instead

of PSA (see Fig. 11). One must be aware, however, of properties that

describe the same thing: a plot using both PSA and H-bond donors

and/or acceptors would make no sense because these are strongly

correlated.

Furthermore, other calculated ADME parameters such as Caco-2

permeability or metabolic stability could be used if sufficiently

robust algorithms are available to do this. One could also consider

selecting more stringent limits for the physicochemical properties

to generate a ‘lead-like’ radar plot or a plot directed towards identi-

fying compounds that have the ability to cross the blood–brain

barrier.

The decision to use five parameters in the plot (rather than any

other number) was a pragmatic one so that a reasonable amount of

information could be presented and still be assimilated easily. One

could, of course, generate a rule-of-five radar plot, with four axes

(c log P, molecular weight, H-bond donors and H-bond acceptors),

using the appropriate limits for each [3].

A modified version of the Novartis radar plot above has been

implemented at GlaxoSmithKline and is deployed on the web via

the Molecular Operating Environment web application environ-

ment (http://www.chemcomp.com/software-med.htm) and as a

custom visualization prototype in Tibco Spotfire. In this manifes-

tation of the radar plot, the five descriptors used are molecular

weight, aromatic ring count (shown recently to be important for

developability [24]), calculated log P, and the Lipinski H-bond

acceptor and donor counts. There is also an additional ‘borderline’

range of property values (coloured yellow) to indicate that the

properties are approaching ‘bad’ property space, and the calcu-

lated descriptor values are included in the plot labels (Fig. 11).

Molecule ‘healthiness’ using a traffic light pie chart
Traffic light-based nutritional labelling of foods has been imple-

mented recently by supermarkets and other food suppliers to

provide at-a-glance information to enable the selection of heal-

thier food options if desired. An example is shown in Fig. 12 (left

chart), indicating whether there are high (red), medium (amber) or

low (green) levels of fat, sugar, salt and calories in the food. The
adjacent figure shows how this approach can be applied to mole-

cules to indicate their ‘health’ in terms of important physicochem-

ical properties.

Caveats when using graphical depictions and
classification schemes
In essence, the graphical representations described above strive to

display multidimensional ADME-related data in a simple, readily

assimilated way and help guide decision making in the drug

discovery process. The desire for simplicity and clarity inevitably

hides some of the shortcomings of the underlying calculations and

assumptions, however, which must be borne in mind.

For example, classification schemes tend to deal in hard cut-offs

(e.g. molecular weight � 500). A compound with a molecular

weight of 501 fails, as does a compound with a weight of 900,

but clearly the former is much more likely to be amenable to

structural modification to improve the situation. Thus some mea-

sure of flexibility around cut-offs (such as borderline ranges) can be

more illustrative. In addition, calculations of some physicochem-

ical properties such as log P, log D and aqueous solubility have

inherent errors associated with them. An area for development

would be the inclusion of some estimation of error and confidence

in the displayed results.
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Another important point is that most current approaches pro-

duce static images, which must be regenerated if the input (i.e. a

molecular structure) is modified. Dynamic displays that give

immediate feedback on changes would be more useful for on-

the-fly hypothesis generation.

Finally, it should be borne in mind that not all molecules that

occupy oral drug-like property space are necessarily drugs, as

pointed out by Kubinyi [25]. Compounds might possess molecular

properties that should, for example, be compatible with good

levels of oral bioavailability, but they might also be highly carci-

nogenic, have unacceptable off-target biological activity, or con-

tain reactive or metabolically sensitive functionality that

precludes their use as drugs.

Concluding remarks
As we have seen in this overview, the old adage that a picture is

worth a thousand words is more than true for scientific visualization
72 www.drugdiscoverytoday.com
in drug discovery. As the importance of physicochemical and

ADME-related properties in drug design has been increasingly

recognized, both simple and more sophisticated graphing and

visualization techniques have been applied to these data to assist

medicinal chemists in designing and selecting molecules with

optimal properties. Although many of the visualization methods

described here are proprietary, there are some freely available

resources to calculate ADME-related physicochemical parameters

that have been summarized recently [26]. In addition, more

interactive data analysis tools are being developed to help chemists

better understand the relationships withinthe oftencomplex multi-

dimensional data. As the pharmaceutical industry increasingly

focuses on finding ways to reduce attrition and increase the

probability that drug candidates will become successful marketed

drugs, it would seem that approaches to visualize ADME-related

properties and summarize data in meaningful ways will continue to

be developed.
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