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Teaser This review provides an update of recent advances in intracellular delivery and
reports mechanisms that could help drugs reach their target efficiently, resulting in smarter

drugs that reach their target still with the original bioavailability.
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The intracellular delivery of nanomaterials and drugs has been attracting

increasing research interest, mainly because of their important effects and

functions in several organelles. Targeting specific organelles can help treat

or decrease the symptoms of diabetes, cancer, infectious, and autoimmune

diseases. Tuning biological and chemical properties enables the creation of

functionalized nanomaterials with enhanced intracellular uptake, ability

to escape premature lysosome degradation, and to reach a specific target.

Here, we provide an update of recent advances in the intracellular delivery

mechanisms that could help drugs reach their target more efficiently.

Introduction
Developments in nanomedicine delivery have provided new perspectives of the design and

synthesis of efficient nanocarriers and multifunctional nanomaterials. Initially, research focused

on nanocarrier biocompatibility and toxicity, whereas second-generation nanomaterials aimed

to have an optimized surface, to provide more stability, stealth, and targeting capabilities. The

most recent models support the ‘smart nanomedicine’ idea, improving targeting mechanisms

and theranostic abilities [1]. This nanotechnological advance is important because it enables

drugs to cross physiological barriers to reach their target sites safely and sustainably [2]. In fact,

nanomaterials provide a stable biocompatible environment to encapsulate drugs, promoting

their controlled release and efficient absorption [3,4]. They also improve the duration of the

therapeutic effects and minimize adverse effects by driving drugs toward the site of action and

increasing the concentration of a drug in the area of pathology in a specific way [5,6]. Depending

on the accumulation of the delivery system in the tissue, cell, or in a specific subcellular

compartment of interest, targeting approaches can be primary, secondary, or tertiary, respectively

[7].

Subcellular targeting is vital for efficient, specific treatments and, thus, specific barriers must be

overcome. The importance of organelle targeting increases when drugs efficiently treat or

Cláudia Azevedo is a PhD

candidate at INEB7 (UP), where she

is currently pursuing her doctorate

in functionalized nanoparticles for

drug delivery under the supervision

of Bruno Sarmento. She was

awarded her BSc in biosciences in

2011 from theUniversidade Católica
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decreases symptoms of diseases such as cancer, Alzheimer’s, dia-

betes, infectious and autoimmune diseases [8]. Specifically, the

intracellular environment contains compounds, responsible for

cell growth, proliferation, differentiation, and death, that are,

therefore, promising drug targets. Thus, target sites can be distrib-

uted throughout the cytoplasm, nucleus, mitochondria, endoplas-

mic reticulum (ER), and Golgi complex [9]. However, endosomes

and lysosomes, which have a low pH and are rich in enzymes, can

result in drug degradation or nonspecific distribution [10,11].

Thus, modulation of the size, charge, and surface composition

of a nanomaterial can dictate the internalization pathway, en-

abling the nanomaterial to evade lysosomes and interact with its

target organelle [12]. Indeed, the potential of nanomaterials to

overcome such barriers has led to the development of platforms

capable of improving their bioavailability [13].

Therefore, there is a need to fully understand the pathways of

nanomaterial uptake and intracellular mechanisms to create smar-

ter drugs that can reach the target site with their original bioavail-

ability [14]. Here, we review each step between drug

administration and the target site to identify all the challenges

that must be overcome for successful drug delivery. This review

will help researchers design more efficient nanomaterials, result-

ing in enhanced drug uptake.

Physical and chemical barriers
There are three fundamental steps during the production of nano-

materials for drug delivery that must be taken into account: (1) the

nanomaterial must be able to survive the harsh conditions of the

gastrointestinal tract (GIT); (2) once internalized, it must reach its

target site and; (3) the pharmacokinetics of the drug must be

maintained.

Nanomaterials can be administrated by several routes, with the

oral route being the most convenient [15]. However, for efficient

oral delivery, nanomaterials must pass through the oral cavity,

which is rich in proteins, mucosal compounds, and bacterial flora,

followed by the stomach, which is highly acidic, and finally the

intestine, where the nanomaterials will be subjected to the activity

of digestive enzymes, the presence of a mucus layer (formed of the

glycoprotein mucin), and tight junctions (TJs). Once they have

crossed the endothelial barrier, the nanomaterials reach the blood,

where they can be taken up unspecifically by phagocytic cells or by

specific target cells [16]. In addition, target sites for a drug can be

distributed throughout the cytoplasm, nucleus, mitochondria,

and lysosomes [9].

The GIT is the main barrier to the successful absorption of

nanomaterials, particularly in terms of drug degradation because

of enzymes, such as proteolytic enzymes in lysosomes, brush-

border peptidases in the villi, and pancreatic proteases in the

duodenal region, and bacterial flora within the gut, which also

contains mucin. Epithelial cells also constitute a physiological

barrier, because they are bond by TJs. Nanomaterials be modified

physicochemically in response to low pH, high temperatures,

reactions with surrounding molecules, in addition to changes to

the weight and charge of the nanomaterial, which will also influ-

ence their absorption and degradation [17]. An additional barrier is

the intestinal epithelium, which controls the passage of drugs into

the blood. Its surface area, 99% of which is covered by enterocytes

and microvilli, significant impacts absorption [18]. Morphologi-
cally, intestinal crypts comprise absorptive enterocytes and secre-

tory cells (e.g., goblet cells, enteroendocrine cells, and Paneth

cells). In addition, there are isolated lymphoid follicles and Peyer’s

patches, which contain specialized M cells [3,17].

Lastly, to reach their target site for their original bioavailability

retained, nanomaterials must overcome the mononuclear phago-

cyte system, avoid becoming nonspecifically distributed, which

can lead to drug resistance, and escape from endosomes [19]. As

discussed in-depth below, the mononuclear phagocyte system can

be overcome by modulating certain characteristics of a nanoma-

terial, while its nonspecific distribution can be avoided by the use

of functionalization or addition of biomimetic surfaces; drug

efflux pumps and consequent drug resistance can be avoid by

the use of CD44 targeting and drugs can escape endosomes by

disrupting their membrane [11].

Cellular internalization
After reaching its target cell, the internalization of a nanomaterial

involves a set of processes, including pre-absorption, uptake,

translocation, and reaching its final target [3,20]. Initially, the

nanomaterial activates its own transport into the cell via receptor

recognition by the ligands that it contains.

Transport mechanisms
There are several possible pathways for the internalization of a

nanomaterial. Here, we focus on the paracellular pathway and

endocytosis, because these are the pathways most used by non-

functionalized and functionalized nanomaterials,

The paracellular route is mainly exploited by nanomaterials of a

particular nature, size, or with an absence of receptors. The nano-

material is transported through two juxtaposed cells via aquapor-

ins and TJs. Aquaporins are proteins that facilitate water transport

across the luminal space to the basolateral membrane [21], where-

as TJs maintain the structural integrity of the membrane. TJ are

gaps between cells and contain occludin and claudin-2 proteins,

which aids paracellular transport because of their permeability

[22]. The presence of TJs and a low surface area limit the transport

of nanomaterials, because they cannot pass through the intestinal

barrier via this route. The TJs must be reversibly opened by

chemically modifying the nanomaterial using permeation enhan-

cers, such as chitosan, polyacrylate, and thiolated polymers (an-

ionic and cationic polymers) [23]. Thus, the paracellular pathway

mainly transports hydrophilic drugs [3,6]. A recent study used a

cationic cyclodextrin-polyethylenimine 2k conjugate complexed

with anionic mRNA encoding HIV gp120 to open TJs and enhance

the paracellular transport of the nanomaterial [24].

Thiolated polymers, known as thiomers, are hydrophilic poly-

mers that are conjugated with hydrophilic macromolecules for

enhanced uptake. Thiomers have the ability to mimic the mecha-

nism of secreted mucus glycoproteins, covalently binding through

disulfide bonds with cysteine from the mucus, enhancing their

mucoadhesion and inhibiting enzyme actions [25]. Thus, thio-

mers remain concentrated at the absorption membrane as a result

of the protection of their thiol groups and efflux inhibition [26].

Thiomers reduce oxidized glutathione (GSSG) to GSH at the same

time that thiol groups are oxidized to disulfide bonds, attaching

the nanomaterial to the mucosa glycoproteins [27]. Then, GSH

binds to the cysteine active site of protein tyrosine phosphatase
www.drugdiscoverytoday.com 945
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FIGURE 1

Effects of a protein corona surrounding a nanoparticle. The corona constitutes a primary nanobio-interface that determines the fate of the nanoparticle and can
have deleterious effects on the interactive proteins. Pre-existing or initial material characteristics contribute to the formation of the corona in biological
environments. Characteristic protein attachment and/or detachment rates, competitive binding interactions, steric hindrance by detergents and adsorbed
polymers, and the protein profile of the body fluid lead to dynamic changes of the corona. The corona can change when particles move from one biological
compartment to another. Reproduced, with permission, from Ref. [47].
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(PTP) via a disulfide bond, preventing PTP from remove the

phosphate group from the tyrosine residues. This results in the

TJs opening, improving the permeation properties of the nano-

material and facilitating its diffusion [28]. An early study showed

PTP inhibition using sodium orthovanadate, which led to tyrosine

phosphorylation at TJs and improved the permeability in bovine

corneal epithelial cells [29]. TJs are responsible for the uptake of

hydrophilic nanomaterials throughout the paracellular route and

their association with thiomers increases their apparent perme-

ability [30,31].

By contrast, functionalized and some nonfunctionalized nano-

materials are typically endocytosed. Endocytosis involves engulf-

ment in membrane invaginations and the formation of

intracellular vesicles [9,11]. This pathway represents the classic

mechanism of nanomaterial uptake, and can be divided into five

types. Even when the nanomaterial is already inside the cell, drugs

can be pumped out via drug efflux pumps, resulting in drug

resistance [32].

Phagocytosis is a receptor-mediated process, where large parti-

cles are engulfed by the cellular membrane. It is limited to macro-

phages, dendritic cells, and M cells [33,34]. By contrast,

pinocytosis is the uptake of fluids and solutes and can be sub-

classified as macropinocytosis, clathrin- and caveolae-mediated
946 www.drugdiscoverytoday.com
uptake, and clathrin- and caveolae-independent uptake. In macro-

pinocytosis, a large volume of fluid containing nanomaterials is

engulfed. It is an active and actin-dependent process and, thus,

requires actin to grow and cholesterol to extend the membrane

[33,35]. It is also nonspecific receptor mediated and, thus, does not

require specific ligand–receptor binding or a specific cellular type.

However, cellular stimulation is required to initiate the process

[36].

Clathrin-mediated endocytosis is a receptor-mediated uptake

mechanism, under the control of dynamin. Dynamin is a GTPase

protein that leads to the division of clathrin pits from the mem-

brane, resulting in the formation of small vesicles (60–200 nm)

coated in clathrin. After internalization, clathrin is removed by

auxilin and HSC70 and vesicles are fused with Rab5 early endo-

somes [33,37]. This mechanism is seen as a housekeeping mecha-

nism that degrades unwanted proteins and maintains cellular

homeostasis; it is a route usually involving low-density lipopro-

teins, transferrins, and ligand–receptor complexes [36]. Pharma-

cological inhibitors have been used to analyze the topology of

endocytosis [38,39]. Steinbach and co-workers used chlorproma-

zine (specific for clathrin), nystatin (specific for caveolin), and

LY294002 (specific for macropinocytosis) to show that clathrin-

mediated endocytosis was the predominant mechanism for the
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internalization of nanoparticles (NPs) [39], as have other studies

[37,40]. Yet, when nanomaterials are decorated with certain li-

gands, such as folic acid and cholesterol, caveolin-mediated en-

docytosis is the mechanism used [11], as demonstrated using

albumin by Chanthick and colleagues [41]. Small caveolae-coated

vesicles (50–80 nm), also under the control of dynamin, are

formed through flask-shaped invaginations in a nonspecific up-

take process. Therefore, caveolin is an integral membrane protein

responsible for the formation of caveolae and, consequently, the

formation of invaginations through caveolin-1 expression. Its

morphology and functions differ depending on the cell type.

During internalization, caveolae are endocytosed together with

vesicles. Caveolae are similar to lipid rafts, because they also

comprise cholesterol and sphingolipids, as well as glycosylpho-

sphatidylinositol (GPI) and several kinases. In contrast to clathrin,

caveolae-mediated endocytosis requires a signal to begin. Endocy-

tosis starts with tyrosine phosphorylation of the associated pro-

tein, which leads to depolymerization and enlistment of actin [36].

This leads to escape from the endolysosome and to the direct

exocytosis of drug carriers [33,35].

Finally, clathrin- and caveolin-independent transport occurs via

nonspecific endocytosis, without the need for a receptor; it is also

characterized as dynamin in- and dependent pathway [3,36]. In

such cases, EIPA is usually used as a transport inhibitor [42].

A recent promising biomanufacturing advance for the intracel-

lular delivery of nanomaterials was microfluidics, a membrane

disruption method. Microfluidics is a technology that improves

the quality of the delivery system and establishes a structure–

function relationship of a nanomaterial, with additional advan-

tages of a uniform-sized emulsion droplet and the understanding

of intracellular delivery barriers. However, it is not yet clear

whether it is possible to scale-up this system for whole-body use

[43]. The microfluidic device passes between single cells creating

transient pores in the plasmatic membrane, which enhance the

intracellular delivery via mechanoporation [44]. Its efficiency has

already been demonstrated for the intracellular delivery of NPs

loaded with dexamethasone; the authors also studied the effect of

NP design on the fate of stem cells [45]. Others have used this

approach to prevent the rapid clearance and consequent loss of

microbubbles using flow-focusing microfluidic devices, in real

time and near to the therapeutic site [46].

Nanomaterial characteristcs and their influence
Internalization and intracellular transport mechanisms are affect-

ed by properties of the nanomaterial being used (Fig. 1). Different

characteristics (size, charge, shape, or elasticity) affect the interac-

tion between the nanomaterial and the cell membrane, causing

altered signaling events and activation of different pathways of

adhesion and internalization. Thus, the desired result, that is,

more effective and specifically targeted delivery at a predeter-

mined rate and time, can be obtained by controlling these param-

eters [1,15].

Size

Size is a vital parameter because it determines the endocytosis

pathway and which cells take up the particle. Particles <10 nm are

mainly removed by renal clearance [48]. When orally administrat-

ed, 10–100-nm particles have higher cellular uptake efficiency,

because they are taken up in Peyer’s patches, and then absorbed
into the systemic circulation, avoiding rapid renal clearance. By

contrast, larger particles are removed by the mononuclear phago-

cyte system (MPS), and those that are 200–300 nm become con-

centrated in the spleen [49,50]. During internalization, larger

particles (>1 mm) enter the cell via macropinocytosis; those that

are >120 nm enter via the clathrin-dependent pathway; those that

are 50–100 nm enter via the caveolae-dependent pathway and

smaller particles (<50 nm) are internalized via the clathrin- and

caveolae-independent pathway. Thus, internalized nanomaterials

are correlated with the size of vacuole formed [20].

A penetration enhancer can be added to macromolecules with

high molecular weight, such as dimethyl palmitoyl ammonio

propanesulfonate (PPS), a zwitterionic surfactant. According to

microscopy studies, PPS allows macromolecules to diffuse via the

paracellular and transcellular pathways, improving their bioavail-

ability by 45-fold [51]. In addition, polyacrylate, chitosan [52],

phytic acid [53], and self-assembling lipid-like peptides [54] also

work as enhancers, as well as thiomers and lectins [55]. These

enhancers have the ability to reversibly open TJs, increasing the

paracellular transport of macromolecular drugs because of the

downregulation of occludin and claudin (TJ proteins), and the

synergism of reductive effects of Ca2+ [56,57]. In terms of the latter,

the cations bind with more affinity to polyacrylate derivatives,

inhibiting lumen enzymes (e.g., trypsin). Thus, the polyacrylate-

Ca2+ complex triggers the opening of TJs [58,59]. It was also

demonstrated that cyclodextrin improves macromolecular absorp-

tion via pulmonary delivery [60]. Finally, an alternative strategy is

the use of palmitoyl glycol chitosan hydrogels [61] or the devel-

opment of liposomes with enhancers to delivery hydrophilic

macromolecules [62].

Surface composition

The surface of a nanomaterial is also important because it is in

contact with the cell, and this contact can be affected by the

hydrophobicity or hydrophilicity of the nanomaterial surface.

Thus, this parameter determines the cellular internalization and

intracellular transport and influences the circulation time and

nanocarrier association with, and recognition by, cells. Hydropho-

bic particles can be delivered to immune cells and penetrate the

bilayer membrane, becoming easily internalized [11,34]. Polymers

are added to nanomaterials to render their surface more inert and

hydrophilic to avoid immune clearance and increase the blood

circulation time. (Poly)ethylene glycol (PEG)ylation is a strategy to

render nanomaterials invisible to macrophages or phagocytes and

to prolong their half-life [63]. PEG chains are covalently conjugat-

ed to nanomaterials, rendering them hydrophilic [64]. PEG can

capture water molecules and form a natural barrier around the

nanomaterial, preventing the proteins from being adsorbed,

which is known as the ‘stealth’ effect [65].

Another strategy is to use biomimetic surfaces, whereby the

nanomaterial surface is modified with a natural membrane coating

to avoid phagocytic clearance, prolong drug circulation, and

improve the biocompatibility. Markers, such as CD47 [66] or even

leukocytes, are attached to the surface of the nanomaterial to

camouflage it, in that the body recognizes it as ‘self’ [67].

Surface charge

The surface charge of the nanomaterial can also be manipulated.

For example, intestinal cell membranes are negatively charged

because of the presence of phospholipids; thus, positively charged
www.drugdiscoverytoday.com 947
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nanomaterials interact more strongly with such membranes, en-

hancing their internalization [9]. A typical example is polyethy-

leneimine (PEI), which is commonly used to permeate membranes

and enable nanomaterials to enter the cell [68]. In terms of

transport, positively charged particles utilize the clathrin-mediat-

ed pathway and macropinocytosis [69], whereas negatively

charged particles tend to utilize the caveolae-mediated pathway

[23,41]. Neutral or slightly negatively charged particles are con-

sidered the most appropriate for long circulation, because they are

not susceptible to MPS. By contrast, nanomaterials that are highly

positively or negatively charged are taken up by macrophages

[18,23,70].

Shape

Shape can also dictate the path of the nanomaterial and can

change over time or after receiving external stimuli to enable a

long circulation and overcome diffusion barriers. It is an impor-

tant factor in flow margination, the avoidance of the immune

system, and tissue accumulation. Spherical particles are better

internalized by macrophages, whereas asymmetrical nanomater-

ials are more advantageous for sensing, self-assembly, tissue engi-

neering, immunoengineering, and therapeutic and diagnostic

delivery [1,34]. Thus, one strategy is to create elliptical particles

to escape macrophages and then expose it to a stimulus, to change

it into a sphere for improved internalization [20,71].

Elasticity and solubility

Finally, increasing elasticity also increases blood residence time

and avoids clearance by the immune system. More elastic nano-

materials use macropinocytosis, whereas less elastic ones are in-

ternalized via clathrin-dependent mechanisms [34,72].
TABLE 1

The influence of nanomaterial characteristics on cellular uptake an
uptake

Characteristic Cellular uptake Inter

Size <10 nm Renal clearance – 

10–10 nm Peyer’s patches <50 n
indep
caveo

100–200 nm Removed by MPS 120 n

200–300 nm Spleen Macro

Surface composition Hydrophobic Immune cells N/A 

Charge Positive Highly positive: taken up by
macrophages

Clath

Neutral Appropriate for long circulation
residency

N/A

Negative Highly negative: taken up by
macrophages; slightly negative:
appropriate for long circulation
residency

Caveo

Shape Spherical Macrophages N/A 

Asymmetrical N/A N/A

Elasticity and solubility Soft Avoid immune system Macro

Hard N/A Clath
mech
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Another popular method is to chemically modify nanomaterials

to change the fluidity and/or solubility of the mucus for oral

administration. For example, it is possible to add fatty acids or

to substitute amino acids to obtain increased solubility. The

addition of fatty acids is proportional to the increased solubility,

which can increase 16-fold with linoleic acid [73]. A similar effect

was also observed with capric, lauric, and oleic acids. These fatty

acids increase hydrophilic transport and reduce transepithelial

electrical resistance, indicating the opening of TJs [74]. Paracel-

lular transport has been related, in several papers, to the transport

of poorly absorbed drugs. A study revealed the relation between

paracellular transport and fatty acids and their effects on the

absorption of mannitol, a paracellular marker, and on morphology

changes of TJs [75]. Researchers added 20 amino acids to ribonu-

clease (RNase) Sa at position 76, and confirmed that asparagine,

glutamine, and threonine had the most significant effects on

protein solubility [76].

In short, various characteristics (Table 1) influence the uptake,

renal clearance, drug stability, and circulation time of nanomater-

ials, as well as the drug release. These properties can even be

changed via internal (pH, redox, temperature, or enzymes) and

external stimuli (ultrasound, magnetic, light, or electrical) [9,15].

Stimuli-responsive nanocarriers, already reviewed elsewhere [77],

are a smart approach for intracellular drug delivery. Recently,

authors inclusively created porous silica nanocarriers sensitive

to three stimuli (proteases, redox, and pH) for drug delivery [78].

Blanco and co-workers summarized the main effects of NP size,

shape, and surface charge among different organs, including

lungs, liver, spleen, and kidneys [11]. It is also necessary to analyze
d internalization pathways and strategies for enhancing their

nalization pathway Strategy

Add a penetration enhancer (PPS, polyacrylate,
chitosan, phytic acid, self-assembling lipid-like
peptides, thiomers, and lectins) to
macromolecules to open TJs

m: clathrin and caveolae
endent; 50–100 nm:
lae dependent

m: clathrin dependent

pinocytosis

Avoid phagocytic clearance, prolong drug
circulation, and improve biocompatibility by (i)
adding hydrophilic polymers (PEGylation); or (ii)
having biomimetic surfaces (CD47, leukocytes)

rin and macropinocytosis Positively charged nanomaterials interact more
strongly with negatively charged intestinal cell
membrane

lae mediated

Elliptical particles that escape macrophages and,
after exposure to stimuli, change to a spherical
form for better internalization

pinocytosis Add fatty acids and/or substitute amino acids

rin-dependent
anisms
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the presence of nanomaterials in the target tissue or organ. This is

currently possible using methods such as magnetic resonance,

ultrasound, fluorescence positron emission tomography (PET),

phosphorescence, X-ray, optical coherence tomography, photo-

acoustic and Raman, fluorescence and photoacoustic approaches.

By contrast, intracellular delivery can be sensed by electrochemis-

try or electrophysiology methods, as reviewed elsewhere [79,80].

Manipulation of the different characteristics of a nanomaterial

can help functionalized and nonfunctionalized nanomaterials to

reach their targets, as discussed below.

Nonfunctionalized nanomaterials
Nonfunctionalized nanomaterials are less specific carriers, because

they do not have a specific target, limiting their functionality as

well as rendering them less stable [81]. However, these carriers can

delivery drugs to or into cells, as is the case for nanocrystals, NPs

and macromolecules. These can be taken up by M cells, entero-

cytes of the intestinal epithelium, or even by phagocytes [82].

Nonfunctionalized nanomaterials are usually used for the negative

control of functionalized nanomaterials.

Nanocrystals
Nanocrystals are solid particles formed by a set of atoms that can be

structured with an aspect ratio of 10–100. Cellulose nanocrystals

(CNCs) are elongated and rigid, and are formed by the acidic

hydrolysis of cellulose [83]. Nanocrystals have the ability to be

loaded with high amounts of drug, which makes them an ideal

way of obtaining pharmacological effects [82]. CNCs with PEI have

been developed to delivery small interfering (si)RNA for gene

silencing. As an antitumor strategy, this formulation protected

the siRNA and facilitated its delivery into tumor cells via endoso-

mal escape or the ‘proton sponge effect’ [84]. In another study, the

effect of unmodified CNCs and their cationic derivatives was

evaluated in mitochondria stress. The authors revealed that these

compounds induced reactive oxygen species (ROS) production

and an immune response [83]. The beneficial effect of nonfunc-
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Examples of inorganic and organic nanoparticles used in medicine. Adapted, wit
tionalized CNCs was also demonstrated by adding them to b-lac-
toglobulin to prolong stability at low pH [85]. In addition, the

surface pH influences the affinity, agglomeration, and aggregation

of nanomaterials. According to some results, surface pH affects

phagocytosis and cellular homeostasis, whereby TF-2 was able to

trigger inflammatory responses at acid pH whereas TF-1, with a

basic pH, suppressed the release of cytokines [86]. In terms of

cellular internalization, nanocrystals enter cells through passive

diffusion [87] or even by endocytosis [88,89].

Nanoparticles
NPs (1–1000 nm) are nontoxic, safe carriers that can be divided

into inorganic [e.g., porous NPs, silica NPs, carbon nanotubes, gold

NPs (AuNPs), quantum dots, and iron oxide NPs] and organic (e.g.,

liposomes, drug–polymer conjugates, micelles, polymeric NPs,

dendrimers, and protein–polymer conjugates) [90] (Fig. 2). For

instance, porous NPs are characterized by a high loading capacity,

chemical and physical robustness, low toxicity, and easy and

cheap production. They can be divided into mesoporous silica

NPs (MSNs) and porous silicon NPs (PSiNP) [91,92]. In both types,

it is possible to avoid the prior release of drugs by controlling the

binding affinity with cargos. Gatekeepers (e.g., AuNPs) can be

attached to the pore outlets via covalent bonds that can be broken

by an externally applied stimulus (e.g., light, magnetic field,

ultrasound, or temperature) or by an internal stimulus inherent

to the treated pathology (excluding acid or basic environments

and the presence of enzymes) [13]. For instance, silica-encapsulat-

ed solid lipid (SESL) particles were developed for cinnarizine (CIN)

delivery to overcome the limited oral absorption of this weakly

basic drug because of its pH dependency under intestinal condi-

tions [93]. Another example of inorganic NPs are QDs, which can

be rapidly taken up by macrophages, and have the ability to move

around the cytoplasm and target nuclear histones via nuclear pore

complexes [94]. Despite their small size (2–10 nm), this ability is

due to the charge associated with the QDs. QDs are also theranos-

tic, showing the potential to promote drug delivery into cells [95].
Polymeric
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Quantum dots
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h permission, from Ref. [90].
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Such intracellular drug delivery has been demonstrated with non-

functionalized AuNPs, whereby unmodified AuNPs (i.e., without

surface modification) were shown to interact cytoplasmically with

pancreatic tumor cells [96].

Altering the charge and surface characteristics of NPs can maxi-

mize their internalization and intracellular transport. Cationic

liposomes effects have been previously studied [97] and are a

frequent choice for gene delivery [98]. A recent study combined

Trp3 protein with cationic liposomes to improve the efficiency of

plasmid DNA (pDNA) delivery to the nucleus of mammalian cells

[99]. Liposomes, as a main nonviral vector, can be produced for

pDNA delivery into cells via macropinocytosis [100]. Liposomes

comprise 3–4 nm of lamellar phospholipid bilayers, with a hydro-

philic center and a hydrophobic part of the membrane containing

amphiphilic molecules. Liposomes are taken up by monocytes and

macrophages, which is an advantage if the aim is to modulate

immunity [16,101]. However, they occasionally induce comple-

ment activation, which can lead to hypersensitivity reactions

[102].

Polymeric NPs are solid colloidal particles in which the drug is

entrapped, encapsulated, or absorbed in biocompatible polymeric

materials to improve drug absorption across biological membranes

[103]. Polymeric materials can be biodegradable [such as poly

(lactide) (PLA), poly(lactide-co-glycolide) copolymers (PLGA),

poly (e-caprolactone) (PCL) and poly(amino acids)], nonbiode-

gradable [such as poly(methyl methacrylate) (PMMA), polyacryl-

amide, polystyrene, and polyacrylates] or natural (such as

chitosan, dextran, heparin, alginate, gelatin, and albumin) [1].

Polymeric NPs are widely used for drug delivery in several cells,

including macrophages [104,105], and are also able to reach

organelles, such as mitochondria and nucleus [106]. They appear

to be a promising strategy for use in treating inflammatory bowel

diseases [107], diabetes [108], cancer [109,110], and in ophthal-

mological conditions [111].

In drug–polymer conjugates, polymeric NPs are conjugated

with drugs via either direct covalent linkage or noncovalent

interactions. Normally, the two components are connected by a

stable or cleavable linker, especially if the drug has to reach the

intracellular target of the conjugate [112]. A recent study by Liang

et al. provided an example of a stable polymer–drug conjugate with

enhanced anticancer effects for treating colon cancer. The authors

chemically conjugated the amine group of gemcitabine (GEM;

20,20difluorodeoxycytidine) with the PLA carboxylic acid group of

a methoxy (m)PEG-PLA polymer block. PEG avoids protein ab-

sorption and the defense system of the body, while the hydropho-

bic PLA renders the conjugate biocompatible, biodegradable, and

nontoxic [113].

Micelles are organic NPs that comprise amphiphilic copolymers

(15–80 nm) and are usually formed by self-assembly in a liquid

[102]. They have a hydrophilic shell, which prevents interactions

with the solvent and renders the loaded micelles stable in aqueous

solution, and a hydrophobic core, which can hold therapeutic

drug molecules [101]. Micelles have attracted interest for drug

administration owing to their high stability and solubilization

capacity because of their hydrophilic shell, controlled drug release,

and low toxicity. A recent study proposed a micelle formulation of

PLGA-PEG-PLGA to prevent cancer metastasis. The authors

showed that a derivative of ursolic acid can act as an anticancer
950 www.drugdiscoverytoday.com
agent, inducing apoptosis by targeting the nucleus and mitochon-

dria of cancer cells [106].

Macromolecules
Despite their size, macromolecules can also diffuse across mem-

branes, as shown, for example, across skin layers [114]. Their

delivery can also be achieved with an external stimulus. For

instance, controlled release can be achieved using near-infrared

(NIR)-light irradiation in AuNPs associated with macromolecules

and light-responsive microcapsules, resulting in the heating and

disruption of the capsules [115]. There are also other ways to

delivery macromolecules, such as by mechanoporation, where

pores are formed to enable access [116]. A common strategy is

the conjugation of macromolecules to mucoadhesive polymers,

such as chitosan, to open TJs and facilitate paracellular transport

[117].

The mechanisms of nonfunctionalized nanomaterial internali-

zation are not yet well established, and more studies are required.

Therefore, the use of functionalized nanomaterials is an alterna-

tive approach for several biomedical applications.

Functionalized nanomaterials
Functionalized nanomaterials are directed to a specific target,

improving their effect and minimizing adverse effects by driving

drugs towards the exact site of action. The upgrading of their

absorption, distribution, metabolism, and excretion (ADME) prop-

erties enhances their therapeutic efficiency [16,20].

Active targeting of nanomaterials refers to when drugs reach the

right target via site-specific targeting. This means that there is an

interaction between the targeting ligands on the nanocarrier and

the receptors on the cell membranes. This recognition is specific,

promoting particle internalization [120,121]. Thus, modifying the

surface of nanomaterials with particular ligands is one way to

improve their cellular uptake and endosomal escape [39]. Table 2

summarizes receptors targeted in this approach, including CD31,

integrin b3 and transferrin [122], TLR2, TLR3 and TLR9 [123],

avb3 integrin [119], transferrin [124], EGFR [125], CD44 [126],

IGFR [127],FcRn [128], CD163 [129], biotin [130], folate [131], and

vitamin B12 [132].

Cell-penetrating peptides (CPPs) are a group of peptides (10–30

amino acids) with the ability to promote molecular transport and are

important for enhancing the intracellular uptake. CPPs can be

conjugated via covalent binding to protein drugs and it is believed

that endocytosis is involved in their translocation. Given that they

are typically positively charged, CPPs, such as glycosaminoglycans

(GAGs) and sialic acids, interact electrostatically with negatively

charged cells, such as glycosaminoglycans (GAGs) and sialic acids, at

the beginning of translocation [133]. A CPP-adaptor fusion protein,

TAT-calmodulin (TAT-CaM), has been developed that results in

efficient intracellular delivery and endosomal escape. In this exam-

ple, there is reversible and high-affinity noncovalent binding that

delivers the cargo into the cytoplasm of eukaryotic cells [134]. Other

researchers have used analogs of the CPP transportan10 conjugated

with NPs to transport siRNA, concluding that the pH change leads to

more efficient delivery, given that the positive charges are responsi-

ble for the stability of the complex [135].

Another approach to nanomaterial functionalization is drug

conjugation with lectins, which have a nonimmunological origin,



Drug Discovery Today �Volume 23, Number 5 �May 2018 REVIEWS

TABLE 2

Examples of receptor and ligands used in intracellular drug deliverya

Receptor Drug Nanocarrier Material and/or ligand Disease Size Refs

avb3 integrin c(RGDyC) or CTX Nanochains Dextran, IONPs Glioma 100 nm [21]
Biotin QUE and DOX Polymeric NPs PEG-PCL Breast cancer 105.8 nm [118]
CD163 Calcein Liposomes PEG Inflammatory and

malignant processes
46 nm [117]

CD31, integrin b3,
transferrin

DOX, DIR or DID Liposomes SSL, RGD-SSL, 7PEP-SSL Sarcoma 100 nm [110]

CD44 SLM, PTX Polymeric NPs PLGA, HA Breast cancer 150 nm [114]
EGFR PTX, parthenolide Micelles PEG2000-DSPE, vitamin E-TPGS Lung cancer 15 nm [113]
FcRn Insulin Polymeric NPs PLA-PEG, IgG Diabetes 63 nm [116]
Folate Nucleic acids Polymeric NPs aminoglycoside-derived Breast and bladder cancer < 200 nm [119]
IGFR Insulin-sodium oleate complex Polymeric NPs PLGA, Eudragit FS30D Diabetes 213 nm [115]
TLR2, TLR3, TLR9 MALP-2, poly(I:C), ODN Polymeric NPs PLGA, Eudragit FS30D Genitorectal viral infection 10 Mm [111]
Transferrin Cyclosporine A Polymeric NPs PLGA, xanthanoid gambogic acid N/A 100 nm [112]
VB12 Insulin Polymeric NPs Dextran Diabetes 192 nm [120]
a Abbreviations: 7PEP-SSL, 7PEP functionalized SSL; c(RGDyC), cyclic pentapeptide; CTX, chlorotoxin; FcRn, Neonatal Fc receptor; IGFR, insulin-like growth factor; IONPs, iron oxide
nanoparticles; MALP-2, macrophage-activating lipoprotein; ODN, CpG oligodeoxynucleotides; PEG2000-DSPE, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene
glycol)-2000; PEG-PCL, poly(ethylene glycol)-b-poly(e-caprolactone); poly(I,C), polyinosine-polycytidylic acid; PTX, paclitaxel; QUE, Quercetin; RGD-SSL, RGD functionalized SSL; SLM,
salinomycin; SSL, sterically stabilized liposomes; TLR, Toll-like receptors; Vitamin E-TPGS, vitamin E D-alpha tocopheryl polyethyleneglycol succinate.
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facilitating the interaction with cells and drug diffusion. Given

that they contain glycans, lectins can bind specifically and non-

covalently to proteins and lipids via glycosylation [136]. Glycans

act as receptor-like structures allowing lectins to bind directly to

epithelial cells, via cytoadhesion, which can result in the transcy-

tosis of larger molecules [137]. A previous study reported that 15

out of 32 lectins analyzed [e.g., Erythrina crista-galli lectin (ECL),

Lycopersicon esculentum lectin (LEL), and wheat germ agglutinin

(WGA)] bound to the apical membranes of airway epithelium and

were taken up by endocytosis [138]. WGA was analyzed further

and shown to have cytoadhesive and cytoinvasive properties,

which facilitated the transport of high-molecular-weight mole-

cules. This lectin binds to N-acetyl-glucosamine and sialic acid and

improves the binding and uptake of protein-based drugs [139,140].

Thus, an approach to developing functionalized nanomaterials

is to study the target tissue and/or cell for principal receptors or

receptors that are overexpressed. Nanomaterials can then be

functionalized with ligands (i.e., antibodies and peptides) that

will interact with those receptors. In addition, dual ligands can

also be used to achieve a synergetic effect [141]. Polysaccharide-

nanosystems association as well as sialyl LewisX, hyaluronic acid

(HA), heparin, dextran, fucoidan, chitosan, and cyclodextrin are

ligands that contribute to local drug delivery, stealthness, en-

hanced affinity, and stabilization against aggregation [142].

Intracellular transport of nanoparticles
Once inside the cell, nanomaterials have three options: (i) be

captured by endosomes and consequently degraded by lysosomes;

(ii) escape into the cytoplasm; or (iii) be recycled [39]. However,

nanomaterials must escape to reach their intended intracellular

target. Thus, endosomal escape is crucial for the intracellular

delivery of a drug [9].

Endocytic route and how to escape it
Nanomaterials are trafficked into endosomes via the endolysoso-

mal route. Early endosomes with pH 6 mature to late endosomes

with pH 5, which can then fuse with lysosomes, which contain

particular digestive enzymes (Fig. 3) [9,12]. In addition, endosomal
trafficking and maturation can be controlled by peptide associa-

tion, pH manipulation, or the disperal of drugs into the cytosol

[143,144]. Endosome lysis, proton-sponge effect, transport of dis-

sociated products, pore formation, membrane disruption, and

fusion of nanomaterials with the limiting membrane are also

strategies descibed to escape endosomes [19].

The proton-sponge effect causes acidification via the transloca-

tion of protons into the endosome, causing osmosis, lysis, and

release of content. Polyamine-based (e.g., PEI [20,36]) polymers

have a pKa of approximately 5–7, which leads to the increased

influx of ions via the inflow of water and consequently endosomal

membrane rupture. In NP-endosome membrane fusion, fusogenic

lipids are incorporated in the carriers. Fusogenic lipids comprise

mainly alanine and glycine, as well as certain hydrophobic resi-

dues. For instance, 1,2-dioleoyl-sn-glycero-3-phosphoethanola-

mine (DOPE) is acid responsive, such that the acid pH drives

glutamate and aspartate protonation, resulting in a new hexagonal

conformational. This facilitates the insertion of fusogenic lipids

between juxtaposed membranes and distroys the lipid packing

[20,36]. In pore formation, after peptides bind in a-helical struc-

ture, they are obliquely inserted into the hydrophobic core of

endosomal membrane, which stabilizes the transmembrane pore,

and are then oriented via their hydrophilic structures. However,

this does not happen during membrane disruption. In this in-

stance, peptides bind to the hydrophilic part of phospholipids and

undergo reorientation of their hydrophobic residues, resulting in

an amphipathic a-helical structure, which allows peptides to cover

the membrane like a carpet and causing disintegration by micelli-

zation of the membrane [36].

Berguig and colleagues created antibody–peptide drug conju-

gates to suppress tumor growth and prolong the drug half life with

low-dose cytotoxicity. The polymer comprise two blocks: the first

improved the pharmacokinetics and the second, which was pH

responsive, enabled endosomal escape. By incorporating the sec-

ond block, the authors were able to form micelles at physiological

pH and disrupt the membrane at endosomal pH, promoting

endosomal escape and intracellular delivery of the first block

[146]. Other examples include hydrophobic amino acid R groups
www.drugdiscoverytoday.com 951
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FIGURE 3

Pathways of receptor endocytosis. Endocytosis involves the capture of transmembrane proteins and their extracellular ligands into cytoplasmic vesicles that are
pinched off from the plasma membrane. The best-studied pathway of receptor internalization is mediated by clathrin-coated pits. These are small areas of the
plasma membrane that are covered on the cytoplasmic surface with clathrin triskelions, which comprise three clathrin heavy chains and three clathrin light
chains assembled into a polyhedral clathrin lattice. Receptors are recruited to clathrin-coated pits by directly interacting with the clathrin coat adaptor complex
AP2 or by binding to other adaptor proteins, which in turn interact with the clathrin heavy chain and/or AP2. Clathrin-coated pits invaginate inwards with the
help of several accessory proteins and pinch off to form clathrin-coated vesicles in a process that requires the GTPase dynamin. Several clathrin-independent
pathways of endocytosis also exist, although the precise mechanisms and structural components involved in these pathways are not well understood. Endocytic
vesicles derived from both clathrin-dependent and -independent endocytosis fuse with early endosomes. Endosomal trafficking is controlled by several Rab
proteins, which are small GTP-binding proteins of the Ras superfamily. Each GTP-bound Rab protein resides in a particular type of endosome and functions by
recruiting specific effector proteins. Following their internalization into early RAB5-containing endosomes, receptors can rapidly recycle back to the plasma
membrane by a RAB4-dependent mechanism, traffic to the recycling compartment that contains RAB11A, or remain in endosomes, which mature into
multivesicular bodies (MVBs) and late endosomes. MVBs are defined by the presence of intraluminal vesicles (ILVs), which are formed by inward membrane
invagination involving endosomal sorting complex required for transport (ESCRT) complexes. Early-to-late endosome maturation involves the acquisition of
RAB7 and the removal of endosomal components that are capable of, and necessary for, recycling. In the MVBs, cargo destined for degradation is incorporated
into ILVs. Fusion of late endosomes and MVBs with lysosomes carrying proteolytic enzymes results in cargo degradation. Reproduced, with permission, from Ref.
[145].
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to aid viral escape from endosomes [147]; Ca2+–siRNA nanocom-

plexes, where electrotastic interactions lead to siRNA release into

the cytoplasm [148]; and TMab4 variants, which resulted in a

threefold improved endosomal escape via membrane pores

[144]. In addition, research using a disulfide-bonded dimer of

TAT (dfTAT), which is found in the cytosol and nucleus, showed

that it is essential for not only cell penetration, but also membrane

leakage. In this study, Erazo-Oliveras and co-workers demonstrat-

ed that dfTAT interacting with bis(monoacylglycero)phosphate

(BMP), present in late endosomes, mediated endosomal leakage

[112].
952 www.drugdiscoverytoday.com
Nonendocytic route as an alternative
When nanomaterials escape endosomes, they enter the cytoplasm

or exit through the ER or Golgi complex. The cytoplasmic route is

generally avoided because most drugs must enter the blood circu-

lation to exert their pharmacological functions [146]. In addition

to the difficulty in exiting cells from the basolateral side, nano-

materials also face degradation factors, such as enzymes, in cyto-

plasm [10].

Those nanomaterials that have an intracellular destiny utilize

ER and Golgi routes as well as the retrograde trafficking pathway.

This route is responsible for recycling several molecules, such as
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receptors, which are targeted by the Golgi complex [149]. ER and

Golgi complexs are important for both secretory and endocytic

pathways, and are also an option to escape the acidic lysosomal

environment [12]. Yu and colleagues found a trafficking pathway

between the ER and plasmatic membrane (PM), and then from the

PM to ER via the Golgi complex. This trafficking was controlled by

retromer-mediated endocytic recycling in the Golgi pathway

[150]. Binding to the class A receptor enables internalization by

caveolae-mediated endocytosis or the lipid raft-mediated pathway

[11]. In early endosomes, the nanocarrier content is delivered into

the ER, Golgi complex, mitochondria, or even outside the cells

[151]. Syntaxin-6 [present in the trans-Golgi network (TGN) and

early endosomes] has an important role in retrograde trafficking

because of its tyrosine-based sorting motif, which regulates post-

Golgi transport and the delivery of certain components, such as

caveolin-1, into the membrane. The inhibition of syntaxin-6

proportionally decreases caveolae-mediated endocytosis. Thus,

the transport of lipidic classes depends on syntaxin-6 [152]. In

addition, syntaxin-6 also interferes with retrograde trafficking of

mannose 6-phosphate receptors (in pancreatic b cells) and insulin-

responsive membrane proteins (in endocrine cells) to lysosomes,

the TGN, and the insulin-responsive compartment. Du and col-

laborators demonstrated the movement of epidermal growth fac-

tor receptor (EGFR) to the Golgi complex via microtubule-

dependent movement and its fusion with the complex via syn-

taxin-6. They also verified that the translocation is necessary for

future fusion with the nucleus, which represents a pathway from

the cell surface to the Golgi complex or even the nucleus [153].

Thus, this pathway would be preferred for nucleus-targeted deliv-

ery rather than diffusing throughout the cytoplasm [20].
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The final step in the drug delivery process is the most important,

given that it is crucial to ensure that the drugs are delivered their

site of action with their original pharmacodynamics and bioavail-

ability intact [9].

The delivered drug can target several intracellular components

(Fig. 4), although the main target organelles are the nucleus,

mitochondria, cytoplasm, ER, and Golgi complex [10,154].

Nucleus

The nucleus is organized as a double-layered lipidic envelope with

nuclear pore complexes (NPCs) (size �10 nm) that regulate flow of

molecules in and out of the nucleus, and an underlying nuclear

lamina. In practice, molecules >9 nm and a molecular weight

higher >40 KDa cannot diffuse passively through NPCs. Large

molecules need carriers to actively pass through the membrane,

such as nuclear localization sequences (NLS). NLS present SV40

sequences containing basic residues (Pro-Lys-Lys-Lys-Arg-Lys-Val)

that are recognized by importins, a class of karyopherin-b proteins

responsible for nuclear import [155,156]. This organelle controls

DNA transcription, reproduction, metabolism, and the cell cycle,

and important functions such as electron transport, ATP synthesis,

ROS generation, genetic programming, and cellular signaling

regulation, can also be affected. It is possible to use nanomaterials

smaller than nucleus pores by applying a positive charge to the

nuclear membrane [10,20], establishing interactions with nuclear

signals or even using molecules with high affinity for DNA, such as

C60-ser or the TAT peptide [7]. The nucleus a crucial role in the

treatment of heart diseases, dystrophy, neurodegenerative dis-

eases, cancer and infection, in which gene mutations are common.

Inducing nuclear membrane permeabilization or using nanoma-
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dystrohy, neurodegenerative disease
- Signal sequences and nucleopores
allow entry of nanomaterials
-NSL, C60-ser, TAT peptide, cationic
polymers

- Neurodegenerative, cancer,
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enter through mitochondrial
ligands and membrane
- DQA, MTS, CdSe/ZnS QD,
MITO-porter, PLGA-b-
PEGTPP, Lipophilic cations

- Infectious and autoimmune diseases,
familial hypercholesterolemia
-Endosomal escape, tight junctions
- CPPs, fusogenic lipids

Cytoplasm

Mitochondria

cleus

Drug Discovery Today 

in target organelles, their associated diseases, characteristics relevant for
d for drug delivery. For definitions of abbreviations, please see the main text.

www.drugdiscoverytoday.com 953



REVIEWS Drug Discovery Today �Volume 23, Number 5 �May 2018

Review
s
�K

EY
N
O
TE

R
EV

IEW
terials coated with molecules that are recognized by nuclear

receptors present in the cytoplasm (e.g., dexamethasone, which

is identified by glucocorticoid receptors) are alternate ways to

interfere with DNA transcription and genetic programming

[156]. Various systems have been developed for gene delivery,

which is the most common way of targeting the nucleus [157].

For instance, micelles with two synergetic anticancer drugs co-

encapsulated into HA-vitamin E succinate were internalized via

caveolae-mediated endocytosis and accumulated in the nucleus.

Cell apoptosis was confirmed, as was reverse multidrug resistance

via CD44 targeting [158]. PLGA NPs have also been developed

coated with AS1411 aptamer (Apt) and loaded with superpara-

magnetic iron oxide NPs (SPIONs) with doxorubicin (DOX). Apt is

used because it targets nucleolin. Nucleolin proteins are present in

the nucleus and have an important role in angiogenesis and cell

proliferation and adhesion. Thus, the combination of Apt with

DOX is useful in the treatment with cancer, given that is a DNA

intercalating agent [159]. Izeddin et al. developed a technique to

track protein molecules in the nucleus and determine transcrip-

tion factor (TF) dynamics. They found that c-Myc and P-TEFb were

global and local explorers of the nucleus, respectively. The control

of TFs influences gene regulation, and protein reactions and

functions in the nucleus, which can be exploited for drug devel-

opment [160]. Another interesting approach is the use of NPs

containing a PEG-benzoic imine-oligo-L-lysine/iridium (III) metal-

lodrug complex with pH-activated size reduction. Thus, at pH 7,

they are large and protected by a PEG shell, whereas, at the acid pH

of endosomes, NPs remain small because of the dissociation and

detachment of PEG. This results in smaller NPs that present oligo-

L-lysine that affects nuclear localization, favoring translocation

into the nucleus [161].

Mitochondria

Mitochondria are characterized by an external membrane, an

intermembrane space, an internal membrane (rich in protein),

and the mitochondrial matrix with its own DNA. They are respon-

sible for cellular homeostasis and, thus, are a good target to

interfere with via oxidative phosphorylation, apoptosis, produc-

tion of ROS, intracellular signaling, and metabolism. Thus, it is

unsurprising that mitochondria contribute to obesity, Alzheimer’s

disease, neurodegeneration, cancer, diabetes mellitus, and cardio-

myopathy, given that polymorphisms or mutations that occur in

mitochondrial DNA result in deficient energy production. There-

fore, lipophilicity and positive charges are required for mitochon-

drial targeting. The internal negative membrane potential of this

organelle is a possible target for positively charged particles [7].

Mitochondriotropic molecules can be used to accumulate nano-

materials inside the cell, because they are amphiphilic. These

molecules have the ability to escape endosomes and deliver their

cargo into mitochondria [10]. Nanoformulations can be guided by

mitochondrial processing proteinases (MPP), which process mito-

chondrial targeting sequences (MTSs) [162]. DQA, MTS, CdSe/ZnS

QD, MITO-porter, PLGA-b-PEGTPP, and lipophilic cations are

potential methods for use in this approach [7]. Recently, mito-

chondria targeting of cancer cells was attempted using a HA

protective shell encapsulated with gold nanostars (AuNs) and

DOX. The formulation was shown to be internalized via the

CD44 receptor. Coated to the AuNs was triphenylphosphine-

modified a-helical pro-apoptotic peptide (TPP-KLA), which loca-
954 www.drugdiscoverytoday.com
lizes to mitochondria, interrupt their membranes, inducing dys-

function and, thus, apoptosis [163]. Folate-coated chitosan NPs

loaded ursolic acid have also been proposed as an antibreast cancer

drug. It was confirmed that these NPs were internalized via a folate-

receptor mediated endocytotic pathway. After destroying the per-

meability of lysosomal membrane, NPs were localized into mito-

chondria, resulting in the overproduction of ROS, destroying the

mitochondrial membrane potential and causing apoptosis of the

cancer cells [164]. Several polymeric conjugations are now avail-

able, especially for cancer. Chitosan has also been used to reach

mitochondria by conjugating it with mitochondria-targeting li-

gand triphenylphosphine (TPP) to deliver ionidamine and siRNA

and to trigger the mitochondrial apoptosis pathway [165]. Thus,

the most appropriate way to target mitochondria and the meta-

bolic pathway is to coat nanomaterials with mitochondrial target-

ing signals and/or peptides conjugated with proapoptotic drugs.

Endoplasmic reticulum

The ER is organized in membrane structures called ‘cisternae’

separated by intermembrane spaces. It is in this organelle that

protein folding and lipid biosynthesis occur. It is also responsible

for controlling drug detoxification, apoptosis, immune responses,

and signaling pathways. It is also is where peptides are loaded to

the major histocompatibility complex (MHC) class I and antigens

are delivered, thus it acts as a presentation site [10]. Protein

transport is mediated by a KDEL sequence that works as a locali-

zation signal, which is recognized by its receptor (KDEL-R),

expressed in ER. Thus, the ER is an appropriate pharmaceutical

target, using a biomimetic approach. Another method for ER

targeting is the use of localization signals or antibodies against

ER receptors that lead to ER stress, protein misfolding and aggre-

gation, calcium homeostasis disturbance, and exposure to free

radicals [7]. Associated with ER dysfunctions are infectious and

protein-folding diseases, diabetes, neurodegeneration, and cardio-

vascular diseases [154]. Murugan and colleagues developed meso-

porous silica NP pores loaded with topotecan and coated with poly

(acrylic acid)-chitosan conjugated with quercetin. This approach

resulted in breast cancer cell death because of structural changes in

organelles such as the ER, nucleus, and mitochondria [166]. For

the treatment of diabetes, the imaging O2
�� using two photon

fluorescent probes (ER-BZT) followed by treatment with metfor-

min has been proposed. Given that the production of ROS leads to

ER stress and disease formation [167], it was found that the natural

compound jaceosidin contributes to sarco-ER Ca2+-ATPase 2b

(SERCA2b) upregulation, decreasing ER stress [168]. Targeting

the liposomal ER, phospholipids, KDEL sequence, and KDEL-R

antibodies are reviewed elsewhere [7].

Golgi complex

Only 4% of the intracellular delivery of nanomaterials target this

organelle, which comprises a system of tubular membranes ori-

ented in a cis or trans direction [154]. The main function of the

Golgi complex is N- or O-glycosylation, and protien transport and

sorting, in addition to its influence on lipid biosynthesis [169]. The

TGN is in the center of both the endocytic and exocytic pathways,

with an important role in straightening lipids and proteins. It is

normally associated with ER, given that different cargos are trans-

ported from there to the cis-Golgi network and then to TNG, where

cargos are sorted and forwarded to their destinations [170]. Mat-

suto and colleagues demonstrated that BICD2 enables Rab6A
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binding to the Golgi complex. They also showed that Rab6A and

BICD2 are responsible for the fusion between Golgi tubules and

the ER in retrograde trafficking [171]. It is unsurprising that Golgi

complex dysfunctions contributes to various diseases, such as

Alzheimer’s, cancer, neurodegenerative diseases, and diabetes

[154]. In 2011, a Golgi complex-targeting signal was discovered

in a coronavirus responsible for severe acute respiratory syndrome.

It was shown that, in the cytoplasmic tail, there is a beta-hairpin

structural motif that controls Golgi complex localization [172].

Exploiting this motif could be a way of improving the targeting of

the Golgi complex. Banfield has also described several mecha-

nisms of protein retention in the Golgi complex, such as kin

recognition, transmembrane domain-mediated and amino acid

sequence motifs, which could also be targeted for drug delivery

[169].

Cytoplasm

The cytoplasm is an intracellular space that contains various

organelles, and can be a target or a way to reach specific organelles.

However, in terms of the latter, drugs are diffusing and interact

randomly with organelles. For instance, siRNA acts in the cyto-

plasm, as do nanomaterials that have high metabolic stability

[173]. SH3 and SH2 of SLAP can be delivered into the cytoplasm

to inhibit T cell receptors, which can be useful for the treatment of

autoimmune diseases [174]. Typically, this organelle is targeted

when infectious and autoimmune diseases and familial hypercho-

lesterolemia occur [8]. There are several approaches available that

allow the delivery of nanomaterials into the cytoplasm, such as

CPPs [175] and cationic nanomaterials [176]. Liposomes with

fusogenic properties [177] or that are pH sensitive have also been
Outside cell
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The challenges to, and strategies for, the enhanced intracellular delivery of nano
studied as drug carriers [178], given that they have the ability to

destabilize endosomal membranes and release drugs into the

cytoplasm [9]. The use of polyampholyte NPs and freeze concen-

tration has been suggested to deliver proteins into the cytoplasm

[174], as has the application of a faded electric treatment for siRNA

delivery [179] via connectosomes and diffusion across TJs [180],

bubble liposomes and ultrasound [181]. Enzyme-sensitive or re-

dox-responsive linkers responsible for degradation of cell mem-

brane have also been reported [7].

Given the nanomaterial parameters described above, the most

ideal route of delivery remains the oral route [81]. Currently 43

drugs have been approved as nanopharmaceuticals (reviewed in

[182]). For example, for intracellular applications, FerahemeTM

(Ferumoxytol) was approved in 2009 by the US Food and Drug

Administration (FDA) to treat the iron deficiency anemia in adults

with chronic kidney disease. This nanopharmaceutical comprises

SPIONS coated with dextran, and the iron is released inside

macrophages, from where it is then added to the intracellular

storage iron pool or transferred to plasma transferrin. In 2014,

Plegridy1 (Biogen), a polymer-protein conjugate (PEGylated IFN

beta-1a) with improved protein stability due to PEGylation, was

approved for the treatment of multiple sclerosis. This drug binds to

type I interferon receptors on the surface of cells and causes

intracellular events that lead to the regulation of interferon-re-

sponsive gene expression. Similarly, in 2015, Onivyde1 (liposomal

Irinotecan) was approved by the FDA for treating pancreatic

cancer, because it increases the intracellular uptake of irinotecan

and reduces the systemic toxicity arising from adverse effects

(www.fda.gov/).
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Concluding remarks
Functionalized nanomaterials are currently the most appropriate

and successful way for a drug to reach a specific target and have

reduced adverse effects and increased efficiency. However, there

are several parameters that must be taken into account, such as

their size, charge, composition, and shape, because these are

correlated with cell uptake, long circulation times, renal clearance,

and drug stability. As discussed above, there are various obstacles

that must be overcome for successful drug delivery, culminating in

the final step characterized by endosomal escape, organelle loca-

tion, and membrane translocation. Some drugs require delivery to

a specific organelle, increasing the delivery challenge. It is evident

that organelle dysfunction is the origin of several diseases; there-

fore, one treatment strategies is to target a set of organelles to reach

the desired therapeutic effect.

Future nanoformulations should aim to exploit the most

successful approaches described above to result in safe, effective

and targeted drug delivery. As detailed in Fig. 5, the ideal nano-

formulation would have a positive surface charge and ligand

affinity to improve endocytosis, enabling them to follow the

retrograde pathway to avoid lysosomal degradation or to escape
956 www.drugdiscoverytoday.com
to endosomes. Finally, a biomimetic strategy could be a way to

improve intracellular transport and/or exocytosis. Nevertheless,

we require a better understanding of the mechanisms underlying

intracellular transport and the integrity of nanomaterials during

and after drug release.
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