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During the past decade, virtual screening (VS) has come of age. In this review, we document the

evolution and maturation of VS from a rather exotic, stand-alone method toward a versatile hit and lead

identification technology. VS campaigns have become fully integrated into drug discovery campaigns,

evenly matched and complementary to high-throughput screening (HTS) methods. Here, we propose a

novel classification of VS applications to help to monitor the advances in VS and to support future

improvement of computational hit and lead identification methods. Several relevant VS studies from

recent publications, in both academic and industrial settings, were selected to demonstrate the progress

in this area. Furthermore, we identify challenges that lie ahead for the development of integrated VS

campaigns.
Introduction
The identification of novel lead structures is a central task at the

beginning of a drug discovery campaign. There are many ways to

identify hits, which can then be used as starting points for hit-to-

lead optimization. The systematic experimental testing of large

compound libraries (i.e. HTS) has been established since the 1980s.

The costs of HTS experiments are tremendous and, thus, VS, an in

silico analog of HTS, was developed ten years later. Comparison of

the appearance of literature related to VS and HTS highlights this

development (Fig. 1).

Notably, the most cited HTS-related publication, that by

Lipinski et al. [1], discusses the application of both HTS and VS

to estimate the solubility and permeability of chemical com-

pounds. Although VS was initially seen as a cost-saving substitute

for HTS, both techniques are of a more complementary nature and

recent developments in the area of lead identification approaches

make use of the advantages of both. In this article, we do not

intended to review the exhaustive applications of VS; instead, we

present and analyze the evolution of VS over the past two decades.

VS is currently maturing as a hit identification strategy, as occurred

with HTS a decade before. This process becomes more evident as

we observe the development of VS from a more isolated procedure
Corresponding author:. Proschak, E. (proschak@pharmchem.uni-frankfurt.de)

358 www.drugdiscoverytoday.com 1359-6446/06/$ - see front matt
toward a fully integrated technique for hit and lead identification

[2]. Experimental data are no longer only collected after a VS

campaign but are instead incorporated into the process.

Ten years ago, a trend toward the integration of VS and HTS had

been documented [3], for which a classification has been proposed

recently [4]. Here, we emphasize current progress in VS from

selected recent publications and give an overview of the emerged

integral strategies in drug discovery. We suggest a categorization of

the global VS technique according to its level of integration into:

classic VS, parallel VS, iterative VS and integrated VS (Fig. 2). We

provide a definition of each category and focus on the benefits and

bottlenecks of each.

Classical applications of virtual screening
VS is often compared to a funnel, where a large number of

molecular compounds, often referred to as a VS library, is reduced

by a computational algorithm to a smaller number that will then

be tested experimentally (Fig. 2a). The screening library often

contains 105–107 molecules, whereas the desirable output of these

protocols is in the range of 100 to 103, depending on the study. The

role of VS algorithms is to enrich active compounds in the highly

reduced output. The protocol often comprises several ‘filtering

layers’, which hold back inactive or undesired molecules or prior-

itize compounds according to their predicted activity (so-called
er � 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.drudis.2013.01.007

mailto:proschak@pharmchem.uni-frankfurt.de
http://dx.doi.org/10.1016/j.drudis.2013.01.007


Drug Discovery Today � Volume 18, Numbers 7/8 �April 2013 REVIEWS

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

0

100

200

300

400

500

600

Year

P
ub

lic
at

io
ns

Drug Discovery Today 

FIGURE 1

Chronological overview of the number of high-throughput screening (HTS; gray bars) and virtual screening (VS; black bars) publications according to ISI Web of

Knowledge (Thomson Reuters, http://www.isiknowledge.com).
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‘ranking’). Often the layers are arranged according to the compu-

tational time required; however, the growth in computational

power resulted in a tendency to apply computationally expensive

methods even to large databases (e.g. high-throughput molecular

docking). The final step usually comprises manual selection of

compounds by experts, often referred to as ‘cherry picking’.

Numerous classic VS studies have been extensively reviewed by

Bajorath and coworkers [5,6]. The interested reader is referred to

those articles, because here we emphasize the maturation of VS

strategies.

Parallel applications of virtual screening
Another VS strategy is to apply multiple protocols in parallel and

to combine the results (Fig. 2b). Often, these protocols cover

various methods from different domains, including two- (2D)

and three-dimensional (3D), ligand- and structure-based, similar-

ity searching, machine learning and molecular modeling meth-

ods. The fundamental idea behind this parallelization is that each

single method is complementary to the others in terms of the

resulting virtual hit lists. Each single protocol is considered to be a

classic approach, as described above. The fusion of multiple results

helps to improve the overall performance by increasing the num-

ber of true positives and decreasing the number of false positives in

the final selection [7]. Although the beneficial effect on the

enrichment of true positive compounds has been studied thor-

oughly, the effect on true and/or false negatives remains largely

unclear. The broad application of parallel VS emerged originally

with the appearance of high-performance computational clusters

in cheminformatics and computational chemistry working groups

boosting the available processor time.

In general, parallel VS is a valid strategy to increase the enrich-

ment rates. Thus, it is important to select the most suitable data
fusion strategy for merging resulting virtual hit lists. Various

fusion models (e.g. similarity or group fusion) have been described

[7]. Furthermore, the application of an additional VS method as the

last step of a fully parallelized approach has been observed. Here,

we summarize selected studies exemplifying the use of parallel VS.

In 2005, coworkers from Sanofi-Aventis reported the discovery

of blockers of the voltage-dependent potassium channel Kv1.5 by

multiple VS approaches [8]. Given the lack of biological assays

suitable for an HTS approach and the 3D protein structure, they

used homology modeling to produce a receptor-based pharmaco-

phore model. This was then used as a query in a VS of the

compound library of the company, where 244 molecules had been

selected for in vitro validation. In total, 19 were successfully con-

firmed as hits (a hit rate of 7.8%), and five compounds had an IC50

in the range of <10 mM up to 900 nM. Intermolecular pairwise

distance measurements based on UNITY fingerprints (Tripos Inter-

national, http://www.tripos.com) showed that if one of the five

hits was used as query, none of the remaining hits would have

been found, because of high structural dissimilarity. Repeating the

same experiment based on Feature Trees [9] revealed only a single

compound, because all the others had distances of less than a

suggested similarity cutoff [10]. Interestingly, two additional VS

approaches using 2D similarity searching and a ligand-based

pharmacophore had been run previously. Both approaches also

resulted in successful identifications of novel Kv1.5 blockers.

However, the number of chemotypes identified was lower com-

pared with the number of chemical classes identified via the

receptor-based pharmacophore approach (five chemotypes). In

addition, none of the identified hits was found by more than

one of the VS approaches. This clearly shows the complementarity

of VS techniques in terms of the identified hits. As a consequence,

it was not necessary to apply more complex data fusion methods to
www.drugdiscoverytoday.com 359
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FIGURE 2

Schematic overview of virtual screening (VS) categories explained in the main text: classical VS (a), parallel VS (b), iterative VS (c) and integrated VS (d). Main
differences are observed in the alignment of applied VS protocols (blue funnels) and wet experiments (colored flasks).
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combine the results of each VS task. A simple union of all hits

increased the number of starting points considered to be favorable

for subsequent optimization.

A more recent study by Tömöri et al. emphasized the comple-

mentarity of 2D and 3D VS methods, illustrated using a hit-finding

task for novel phosphodiesterase type V (PDE5) inhibitors [11].

The study was split into two parts, with the first part comprising a

classic similarity-based VS and a second part in which follow-up

hits were found by both 2D- and 3D-based methods.

In the first part of their study, 27 reference inhibitors were

collected from the literature and from clinical data. A database

with more than 25 million commercially available compounds

was reduced to 8655 molecules by similarity searching against the

reference compounds. After filtering by physicochemical proper-

ties, diversity selection and cherry picking, 97 compounds were

obtained, resulting in eight hits with a PDE5 inhibition of >55% at

10 mM (hit rate of 8.2%), two of which had an IC50 of <1 mM. Based

on their novelty and efficacy, six of the eight compounds were

selected for the second part, which comprised three rounds: (i)

individual similarity searches; (ii) group-fused similarity searches;

and (iii) docking of next neighbors.

In the first round of the second part, each of the initial six hits

selected was used as a query for similarity searching via JChem
360 www.drugdiscoverytoday.com
fingerprints (ChemAxon, http://www.chemaxon.com) individu-

ally. For each query, ten nearest neighbors and ten most diverse

molecules up to a Tanimoto coefficient [12] of >0.8 have been

selected for purchase (120 compounds in total). Of these, 104

could be obtained for testing, with 22 molecules showing an

inhibition of >55%, whereas nine had an IC50 of <1 MM.

In the second round, the similarity ranked lists of the first round

were fused, and the highest rated compounds, plus an additional

set of ten diverse compounds, were selected for purchase. In total,

14 could be obtained for testing, and three showed an inhibition of

>55%. Notably, these molecules had not been found by the

approaches run previously, showing the potential of group fusion.

In the last round, 1810 nearest neighbors of the initial six hits

(Tanimoto distance up to >0.75) were selected for GOLD [13]

docking experiments into the binding pocket of a crystal structure

of PDE5. Out of the top-ranking 60 compounds, 48 molecules

could be obtained for biological validation and 11 compounds

showed a significant inhibition at 10 mM, whereas three com-

pounds had an IC50 of �1 mM. Interestingly, although all three

had also been identified in the other rounds, they were not ranked

as high as in the 3D-docking experiment. This indicates that

ligand- and structure-based VS methods highlight different aspects

of screening molecules, which is the basis for the complementarity

http://www.chemaxon.com/
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of their results. However, overlapping hit lists are possible and

sometimes even desired for hit prioritization.

Xia et al. used solely 3D-based VS for novel inhibitors of 11b-

hydroxysteroid dehydrogenase type 1 (11b-HSD1) [14]. The foun-

dation of their experiment was given by 15 co-crystallized inhi-

bitors (ligand queries), using the structure of the enzyme as

docking target, and a commercial screening database with multi-

ple conformations generated using OMEGA (OpenEye Scientific

Software, http://www.eyesopen.com).

In the first part of their study, ligand-based ROCS [15] (OpenEye

Scientific Software, http://www.eyesopen.com) screenings with

the queries against the screening database resulted in 1000 top-

ranked virtual hits. The second part was a structure-based

approach, where the screening database was docked into the target

protein structure, also resulting in 1000 top-ranked molecules.

Combination of both lists was performed using a more thorough

docking procedure of all 2000 top-ranked virtual molecules using

the Glide docking [16]. Out of the top 200 ranked molecules in this

list, 70 compounds were purchased and 14 showed significant

inhibition of >50% at 1 mM in a scintillation proximity assay for

11b-HSD1. Of these compounds, eight showed differing scaffolds

and IC50 values of <100 nM in follow-up binding affinity measure-

ments, with the best value being 3.7 nM.

This study showed that the resulting virtual hit list of ligand-

and structure-based methods can vary immensely, and that both

must be performed in parallel to cover correct true positives.

Although fusing the results with another method is legitimate,

one could argue that the final results are massively biased toward

structure-based docking. Unfortunately, it was not noted how

many of the 14 true positives source were from the ligand-based

approach or from the parallel structure-based approach. Yet, the

identified hits exhibited extraordinary well-validated measure-

ments and demonstrate furthermore the capability of VS.

To evaluate the performance of different data fusion strategies,

Svensson et al. [17] benchmarked five algorithms (sum rank, rank

vote, sum score, Pareto ranking and parallel selection) on 14

targets of the DUD data set [18]. Retrospective VS tasks were

performed using docking (Glide), pharmacophore search [Phase

(Schrödinger, http://www.schrodinger.com)], shape similarity

(ROCS) and electrostatic similarity searching [EON (OpenEye

Scientific Software, http://www.eyesopen.com)] spanning a broad

selection of ligand- and structure-based methods. The authors

investigated whether data fusion could increase the enrichment

compared with running each task alone. They observed that data

fusion in general leads to a higher recovery rate of known actives

compared with the best single procedure. However, the fusion

algorithms performed differently well, led by parallel selection as

the best algorithm over all 14 targets, followed closely by Pareto

ranking and rank voting. Therefore, data fusion constitutes a

necessary procedure in VS tasks where manifold screening meth-

ods are applied in parallel.

Iterative applications of virtual screening
Other recent prospective studies demonstrate the maturation of

VS to a third category, namely iterative VS. Here, VS is not an

isolated task before the experimental evaluation; instead, it is

sequentially integrated, hence iteratively, into the hit identifica-

tion, hit expansion and hit-to-lead optimization processes. The
information obtained from in vitro screening experiments subse-

quently flows back into VS and helps to improve the in silico model

(Fig. 2c). The idea behind adaptive optimization is that com-

pounds for in vitro evaluations are selected from the in silico

compound library and are subsequently subjected to experimental

evaluation. The most active compounds are then used to choose

similar novel structures as new starting points. However, the

similarity threshold applied is not constant but adaptive and

decreases with every screening round. This approach assumes

that, although first hits found by a VS procedure are perhaps

not the best ones that are present in the available compound

library, the subsequent ‘narrowing in’ will result in more potent

hits. The first prospective application of a genetic algorithm was

reported by Weber and coworkers [19], where a thrombin inhibitor

(Ki = 0.22 mM) was evolved from 160,000 possible Ugi-type reaction

products by 18-fold application of the optimization strategy. Less

optimization rounds are required if more target knowledge in

terms of a more sophisticated screening model is used for input.

Zander and coworkers [20] demonstrated that the potency of

initial hits from the first in silico screening round can be optimized

by simple substructure search. Their prospective study aimed to

develop bacterial thymidine kinase inhibitors for treatment of

methicillin-resistant Staphylococcus aureus (MRSA) infections in

which a VS cascade was used to retrieve initial hits. The first round

of VS comprised a clustering step using the topological pharma-

cophore descriptor CATS [21] and self-organizing maps [22]. Then,

three methods were applied sequentially: PHAST [23] (molecular

comparison by string alignment), pseudoreceptor modeling PRPS

[24] (automatic receptor-based pharmacophore screening) and

ShaEP [25] (3D similarity search using shape and electrostatic

potential comparison). All three methods were able to retrieve

weak hits. From 14 compounds screened in vitro, seven exhibited

MICs between 128 mg/l and 32 mg/l. Subsequently, substructure

searches have been performed using the two most potent com-

pounds, which led to two compound series with improved poten-

cies showing MIC values up to 0.25 mg/l.

The cascaded study design is not necessarily restricted to nar-

rowing in on the structural diversity of the screening hits toward

higher potency. At each step, a broader search can be performed to

modify the scaffold toward better chemical accessibility or more

promising ADME and/or toxicological properties. The broader

search requires application of different screening protocols at each

step. A comprehensive study was performed by Hofmann and

coworkers [26]. Here, a charge-based descriptor similarity search

was performed to find novel 5-lipoxygenase (5-LO) inhibitors

based on a published reference structure. Seven out of 11 com-

pounds selected for biological evaluation exhibited low micromo-

lar IC50 values on 5-LO. Two hit series were selected for

substructure search and both yielded compounds with submicro-

molar potency [27,28].

Experimental information available a priori is valuable for such

sequential VS campaigns and enables the first biological evalua-

tion step to be skipped. A study by de Graaf and coworkers [29]

demonstrated the impact of the availability of this information on

the hit rate of the structure-based VS campaign. In this study, the

X-ray structure of histamine H1 receptor (H1R) with a co-crystal-

lized antagonist was used for structure-based VS by docking. A

large number of active H1R antagonists available from literature
www.drugdiscoverytoday.com 361

http://www.eyesopen.com/
http://www.eyesopen.com/
http://www.schrodinger.com/
http://www.eyesopen.com/


REVIEWS Drug Discovery Today � Volume 18, Numbers 7/8 �April 2013

R
eview

s
�IN

F
O
R
M
A
T
IC
S

were used to validate the docking protocol and to adjust scoring

thresholds for the selection of compounds. After a collection of

commercially available fragment-like ligands was docked into the

binding site of H1R, 26 compounds were selected for experimental

validation. The hit rate of this study was high (73% of compounds

exhibited a Ki < 15 mM), which underlines the importance of a

priori experimental information.

Integrated applications of virtual screening
Most recently, a fourth category of advanced applications of VS

emerged, which demonstrates full integration of computational

techniques in the hit retrieval process, hand in hand with HTS. The

most simple liaison is described as the use of HTS results in

subsequent VS approaches (Fig. 2d). However, differing sequential

arrangements have been observed to highlight complementary

effects, such as reduction of false positive HTS hits or focusing

chemical space.

In an effort to combine HTS-derived activity data to train in silico

models aiming at the prospective discovery of further starting

points, scientists from Vanderbilt University [30] performed a

high-throughput screening of a diverse library of approximately

140,000 screening compounds to identify positive allosteric mod-

ulators (PAMs) of the metabotropic glutamate receptor 5

(mGluR5). The potencies of a total of 1382 primary PAM hits were

used to train quantitative structure–activity relationship (QSAR)

models using artificial neural networks (ANN) to predict EC50

potencies. Both continuous and classification predictors were

trained on numerical structural descriptors. The resulting ANNs

were applied in a prospective VS of a virtual database of approxi-

mately 450,000 drug-like screening compounds, leading to a set of

282 potentially active virtual hits, out of which 232 (82.2%) were

confirmed as true active potentiators and partial agonists. This

result constitutes an enrichment factor of 23 for PAM activity and

30 for the overall modulation of the mGluR5 compared with a 1%

hit rate in the original screening deck. Although 72% of the

confirmed hits turned out to be close derivative PAMs from the

training data set, which could also have been identified by more

simple ‘analoguing’ approaches, 28% were considered to be non-

trivial modifications (e.g. not sharing a common scaffold with

ligands from the training data set).

This approach could be a particularly interesting strategy in

cases where discovery efforts are aimed at further chemical space

not yet covered by available HTS libraries (e.g. targeting vast

virtual libraries or additional compound libraries available from

commercial sources).

The value of cheminformatics as a particular VS method

applied post-HTS was shown by a group at Novartis in an effort

to elucidate the potential of screening artifacts in HTS assays

[31]. The authors retrospectively analyzed the molecular proper-

ties of a comprehensive number of hits obtained from a high-

throughput screening platform on 26 targets, including signal-

transduction proteins, enzymes, protein–protein interactions,

kinases and other non-membrane proteins, over a period of

several years. The size of a typical primary hit list resulting from

this proprietary affinity-based HTS technology was reported to

range from several hundreds to up to more than 10,000 com-

pounds from a library of approximately 500,000 screening com-

pounds. The study aimed to identify sublibraries of frequent
362 www.drugdiscoverytoday.com
hitters and to discriminate between compartments of screening

space yielding high and no hit rates. To guide this effort, an

analysis was performed on the number of unique active mole-

cules and scaffolds, represented by their topological molecular

fingerprints and Bemis-Murcko scaffolds [32]. The authors

observed no substantial frequent hitter problem, because most

hits (70–90%) annotated by their molecular fingerprints were

identified in only a single assay, leading to the conclusion that

the hits might be selective for their corresponding target over the

range of screening campaigns evaluated. A similar finding was

observed for the analysis of molecular scaffolds. Here, only a

minor increase in frequency of individual molecular frameworks

being potential frequent hitters was found.

An additional investigation of compliance to the Rule-of-Five

[33] revealed that a considerable number of molecules (42%)

from the validated hit lists violated none of the rules, whereas

most satisfied at least two of the four criteria, demonstrating the

potential developability of the identified starting points into

leads. Additionally, the authors reported that both random

subsets and subsets assembled by rational selection tended

to show comparable coverage of structure space in the corre-

sponding screening library, with a marginal superiority of the

rationally selected subsets. In brief, this study demonstrates the

value of cheminformatics in HTS triaging for early identification

of potential frequent hitters and over-represented scaffolds

making computational methods an integral part of postscreen-

ing protocols.

A case study to improve the accuracy of primary HTS hit lists

and, thus, reduce the efforts required for hit follow-up in con-

firmatory screens was carried out by Jenkins and colleagues [34].

Here, VS using two different docking methods was applied in

parallel with a HTS of two diverse screening libraries aiming to

discover angiogenin inhibitors. As a particular challenge, the

authors were faced with a high percentage of false positives from

HTS observed in follow-up assays, prompting a resource-saving

computational triaging step after the initial screening. It was

shown that a consensus selection of HTS hits also identified by

VS could considerably improve the enrichment of primary assay

results, reducing the rate of false positives, and was particularly

effective at identifying ligands with targeted mid-micromolar

dissociation constants. To assess the value of VS as a preprocessing

step to their HTS campaign, the authors also analyzed the ability of

VS, in particular molecular docking, to identify subsets of the HTS

library with an increased likelihood of containing actives, thus

reducing the number of compounds to be screened in vitro. One of

the two applied VS schemes reduced the number of compounds

required for screening by 50 times (retaining 42% of the actives).

However, to increase the percentage of actives substantially, the

fusion of two VS methods was required, which led to a reduction of

the library size by four times.

The discovery of protein–protein interaction (PPI) inhibitors is

especially challenging owing to the nature of the binding site

itself, where the mechanism of ligand–protein interaction is lar-

gely unclear. Betzi and coworkers [35] successfully applied VS and

experimental screening to identify inhibitors for the human

immunodeficiency virus type 1 (hiv-1) negative regulatory factor

(Nef) protein without prior knowledge of the reference inhibitors.

The group combined high-throughput docking using the available
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apo-structure of the protein and applied pharmacophore con-

straints in addition to an analog-searching strategy and compared

the results with a systematic HTS of the same library, demonstrat-

ing significant enrichment could be obtained by in silico screening.

In this study, the authors could validate a drug-like VS hit as being

a tractable reference compound for their cell-based in vitro assay. In

a subsequent step, the complete library of screening compounds

was tested in the same in vitro assay, revalidating the best-scoring

VS hit. Thus, the combined approach of VS and HTS could demon-

strate not only the value of computational prefiltering of libraries

with the goal of enrichment, but also the true complementary

interplay of in silico and in vitro studies mutually validating each

other, especially in a challenging scenario with little previous

knowledge to start from.

In another publication, a group at Gedeon Richter [36] demon-

strated not only the effectiveness of VS in a head-to-head com-

parison with experimental HTS of the same library in terms of

enrichment, but also their complementarity. Here, hit identifica-

tion for inhibitors of the serine/threonine kinase glycogen

synthase kinase-3b (GSK-3b) was performed. A VS campaign

using high-throughput docking with pharmacophore prefilter-

ing was validated by screening the same library of compounds

in vitro. Similar enrichment factors at 1% of the screening

library were obtained for both the in silico and in vitro screen,

whereas a considerable increase in the overall hit rate was

observed for VS (12.9%) compared with HTS (0.55%). Notably,

analysis of the resulting validated hits by clustering and multi-

dimensional scaling [37] of their corresponding molecular fin-

gerprints as structural descriptors indicated that the majority of

chemical space identified by HTS could also be explored by VS

and vice versa. The authors concluded that, owing to the com-

parably large number of false positives and negatives in VS, it

might constitute a viable strategy to design focused screening

libraries for HTS or to prefilter commercially available target-

directed VS libraries.
Concluding remarks
In the literature, the evolution of VS strategies is an evident trend.

Not only the maturation of computational methods, but also an

increasing degree of their integration into the discovery process

can be observed over the past decade. It is noteworthy that the

prospective applicability of VS per se is no longer a matter for

debate, but rather the question is how to maximize its outcome. At

present, the community is focusing on best VS practices to ensure

the delivery of attractive chemical starting points. Methodological

improvements can still be observed, and there appears not to be a

single best way to tackle the different challenges faced by compu-

tational approaches with during drug discovery. Perhaps this

question will never be answered, because the outcome of VS

campaigns depends on the respective biological target, level of

prior knowledge and the aim of the study.

The limitations of VS have been comprehensively described

elsewhere [38,39] and the current discussion highlights the need

to create community-wide standards of setting-up and reporting

VS studies, as done for HTS. A precedent-setting step has already

been taken by the new publication guidelines for computational

studies in the Journal of Medicinal Chemistry [40]. We believe that

the definition of VS categories as proposed in this review is a

helpful step toward documenting the past evolution and support-

ing future improvement of methods.

In the case studies discussed, it appears that VS is almost as

relevant as HTS as a hit-delivery method. However, it is still

inferior in terms of budget and resources. Especially in times of

increasing pressure on research and development (budget cuts, site

closures and lay-offs) [41], we believe that there is a huge oppor-

tunity for computational groups to prove themselves as cost savers

and risk minimizers. The classic role of computational drug

designers seems to have evolved beyond a supporting function

in medicinal chemistry departments, because closer interaction of

virtual and wet screeners might be a key aspect for future drug

discovery success.
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