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All scientific disciplines, including medicinal chemistry, are the subject of a revolution
as data are generated at unprecedented rates and their analysis and exploitation

become increasingly fundamental to innovation.
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Science, and the way we undertake research, is changing. The increasing

rate of data generation across all scientific disciplines is providing

incredible opportunities for data-driven research, with the potential to

transform our current practices. The exploitation of so-called ‘big data’

will enable us to undertake research projects never previously possible but

should also stimulate a re-evaluation of all our data practices. Data-driven

medicinal chemistry approaches have the potential to improve decision

making in drug discovery projects, providing that all researchers embrace

the role of ‘data scientist’ and uncover the meaningful relationships and

patterns in available data.

Introduction
How we manage and explore data is not a new topic in pharmaceutical research but has become

acutely more important as the perception grows that we are now producing data at a faster rate

than we can analyse, interpret and base decisions upon it. Data-driven drug design is dependent

on medicinal chemists (computational and synthetic) dealing with the growth in data volumes

and finding ways to convert these resources into better decisions.

Data-driven research has two interconnected and equal branches:

i. Ensuring the most benefit can be extracted from the data you generate internally.

ii. Incorporating externally available data resources into your decision making.

The term ‘big data’ has recently entered the common lexicon with the mainstream media

regularly discussing the implications and opportunities of data as the ‘new oil’. The subject is

most often presented in the context of business intelligence and the use of information resources

and social media to understand and target consumers better. The apparent big-data revolution is,

however, just as relevant in scientific research, with a growing need to manage increasing data

resources and utilise the potential to enable a greater degree of data-driven decision making.

The universal importance of the big-data challenge across all scientific fields means that

methods and approaches developed in one field could have potential applications in seemingly

unrelated disciplines. Taking advantage of developments and protocols from other scientific
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disciplines will benefit medicinal chemistry and data-driven drug

discovery. Furthermore, the current interest in big data has also

served as a reminder to review all our data practices and to evaluate

many aspects of current research practices. Although many of the

challenges posed by the rapid growth in data are technical, it is

important that we pay equal attention to the behavioural changes

required in project teams and at the individual researcher level.

The role of the medicinal chemist (computational and synthetic)

has never been static and continues to evolve [1]. The need to

embrace further the role of data scientist or knowledge worker

represents the latest stage of this evolution.

The new science
Data have always underpinned hypothesis-driven research, but

the scale of its generation is now so great that science has to adapt

to ensure it can fully exploit the opportunities it provides [2].

Additionally, the days of individual researchers working in iso-

lated groups and focused only on their own, increasingly narrow

expertise are numbered. Breakthroughs are increasingly made at

the interface of disciplines by groups of scientists benefitting from

the combination of their diverse skills. Modern research is char-

acterised by four developments:

i. The access to, and requirement to, manage large amounts of

data.

Big data, although undoubtedly a hype term, is also a very real

phenomenon driven by our increasingly digital world.

Scientific data are generated at increasing speed owing to

the miniaturisation and parallelisation of experiments, the

deployment of remote sensors and the use of laboratory

information management systems (LIMS) to integrate experi-

mental tools with the internet and associated databases. In

the internet age, data are shared as rapidly as they are

generated, facilitating contemporary collaborative science

and knowledge sharing. Good management of data is crucial

to ensure reproducibility of earlier work, to develop larger

populations of similar data to improve statistical analysis and

for enabling data-driven research in the future. Medicinal

chemistry is equally subject to the demands and opportunities

of the big data era. This is driven by parallel synthesis, the

generation of increasingly large and complex analytical and

biological datasets associated with each new chemical entity

(NCE) and the need to integrate publicly available informa-

tion, including patent literature, into the design process.

ii. The requirement for all researchers to become data scientists.

Although not every scientist is a mathematician, it is

necessary for all scientists to have some mathematical

capability. Modern data-driven approaches will require all

researchers to become, in part, data scientists, which means

developing and applying data analysis skills in addition to

their existing experimental expertise. The role of the

medicinal chemist (either from a synthetic or computational

background) is to make decisions about which of the infinite

possibility of new compounds should be made next (Fig. 1). As

the amount and variety of data on which to base these

decisions grows, so too must the data analysis skills of the

medicinal chemist.

statistical tools, extract meaningful information, interpret

results, recognise potential problems and make visualisations

to communicate their findings. These are techniques rarely

taught during organic chemistry degrees but must become

fundamental medicinal chemistry tools. In fact, it can be

questioned whether our organic chemistry graduates are

significantly more data savvy, in this digital era, than previous

generations, and if course curriculums have kept pace with

the rapid changes in science.

Scientists from all disciplines are struggling to manage and

share data produced by their own laboratories as well as

accessing and integrating data produced by others. A recent

report: supporting the changing research practices of chemists [3],

highlights the difficulties chemists are already facing in

managing data and keeping abreast of current information

resources with three key findings.
� Chemists need more and better support in data manage-

ment, storage and sharing.
� Chemists often struggle to keep up to date with the

relevant literature.
� Chemists are not very adept at using digital technologies to

disseminate their research to a wide audience.

Correcting this situation will require improved education and

increased access to data and information management tools.

REVIEWS Drug Discovery Today � Volume 19, Number 7 � July 2014
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FIGURE 1

A representation of some of the common decisions that are faced by a

medicinal chemist during a typical drug discovery project.
The modern medicinal chemist should be able to recognise

sources of relevant information, prepare raw data, use
860 www.drugdiscoverytoday.com
LIMS and electronic laboratory notebooks (ELNs) are helping

to manage the data produced by synthetic chemists, but
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integration with other data resources and external literature

remains problematic.

iii. The increased complexity of research projects.

In relation to medicinal chemistry, complexity is currently

illustrated by the need to undertake multiparameter drug

discovery and balance numerous activities and characteristics

within chemical series [4–7]. This is a direct result of pharma’s

attempts to reduce attrition rates in development by testing

for a greater number of properties earlier in the process. This

requires drug designers to manage a larger variety of property

data and ensure incorporation into their design strategies. In

the long-term this is likely to improve the quality of

compounds being produced in research, but only if drug

hunters have the skills, tools and mindset to ensure these data

can be used to make new and improved decisions.

Understanding the complexity of biological processes to a

sufficient degree that we are able to intervene chemically is

the goal of rational drug design. A potential shift from the

current ‘one-target–one-drug’ model to a multiple-target

approach, predicted by many, will add further to this

complexity [8] as networks of interactions grow and

selectivity profiles become intricate. Quantifying the phar-

macokinetic and pharmacodynamic (PKPD) requirements

and outcomes of multitarget drugs will also require more

sophisticated information management as well as medicinal

chemical approaches capable of directing optimisation on

multiple disparate targets and properties.

iv. The need to work effectively in larger teams with colleagues

from multiple disciplines and at multiple locations.

Medicinal chemists undertake drug discovery projects as part

of collaborative teams including pharmacologists, molecular

biologists, informaticians and others. In other industries, in

particular engineering, large multifactorial problems can be

divided into smaller tasks and divided between disparate

research and development teams who work independently

[9]. This siloed approach is detrimental to drug discovery,

which is dependent on collaboration, reflecting the general

trend that discovery is increasingly made at the interface

between multiple disciplines. Ensuring data generation from

each discipline of the team is synchronised and shared

efficiently is crucial, as is enabling the team to make decisions

based on data. Furthermore, teams distributed across different

sites, perhaps on different continents with differing time

zones, are increasingly common, as is the need for close

collaboration with partnering organisations in contract

research organisations (CROs) and academia.

Sharing explicit data in these collaborations provides

challenges (technical and social), but is certainly easier to

achieve than sharing of the tacit knowledge that comes from

the specific experience and insight of individual researchers

and teams [10]. Tackling the need to share this knowledge is

also crucial to successful collaborative research and is

dependent on good knowledge management practices.

The big data challenge in medicinal chemistry
When discussing big data it is tempting to quantify the issue by

including examples of relevant large data resources, for example

the number of substances in the Chemical Abstract Services
Registry (currently 74 million). However, scale alone is not suffi-

cient to define the concept of big data. In addition to volume, the

velocity at which data are generated and the variety, the so-called

3Vs of big data (defined by Doug Laney while an analyst at META

group), are of equal importance. Since the first use of these terms to

characterise big data, the concept has become routinely supple-

mented by two additional terms: value and veracity. It is the

specific interplay and combination of these five factors (5Vs) that

defines big data rather than the size of any specific database.

Volume
There is no single measure to define big data, or how much it

comprises. Parallelisation and miniaturisation, combinatorial

synthesis, high-content technologies and an increase in the num-

ber and diversity of measured parameters have contributed to a

dramatic increase in the volume of data available to medicinal

chemists. There has also been a rapid growth in the volume of

publicly available data relevant to drug designers. However, com-

pared with many other disciplines, for example astronomy, med-

icinal chemistry generates a relatively small amount of data, even

for projects that might include an imaging component. The most

common analogy used to quantify big data is: any amount that is

too big to be managed by current conventional methods. This is

however typically related to the capacity of hardware including

processing power, data storage or network capacity. Even for the

most intense medicinal chemistry projects, current computing

architectures should be capable of managing these requirements.

In this respect, volume is perhaps the least important of the 5Vs in

the context of medicinal chemistry. A more relevant measure is

whether the drug discovery team or organisation is able to extract

the relevant information from their rapidly growing data

resources. Are the methods we currently rely on scalable and

robust? Does the team have sufficient data-science skills to exploit

the resources at hand? Above all, are sufficient resources being

allocated to data management and analysis?

Velocity
The goal of data-driven or intensive research is to improve decision

making, perhaps in terms of speed or quality (preferably both). In

the context of medicinal chemistry, decision making has to fit

within the framework and timing of the drug design cycle (Fig. 2)

and the optimisation of the evaluation phase [11]. As the speed of

new data generation increases it becomes harder to ensure all

factors are being duly considered in decision making. Ideally

experimental data should be disseminated among the discovery

team as it is generated or soon after. However, daily data updates

put considerable pressure on researchers if we expect them to

incorporate this new information into design decisions. New data

are generated faster than decisions can be made, because every new

data point is a potential reason to alter direction.

We know that drug discovery teams, like all project teams, are

susceptible to a number of repeating bad practices that result in

poor decision making [12]. These common errors in behaviour will

undoubtedly increase as the amount and speed of data generation

also increases. Earlier testimonies also tell us that growth of data

and increased pressure to make rapid decisions can result in

decreased evidence-based actions, with teams reporting that they

consciously ignored new data [13]. Managing increasing data
www.drugdiscoverytoday.com 861
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FIGURE 2

The classic depiction of the iterative cycle undertaken during the synthetic

phase of drug discovery projects. In future, increased time and focus will be

spent on the evaluation of new data and their integration into the design
phase.
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velocity, like most aspects of data-driven research, has a technical

and a behavioural component. Intuitive data repositories and

decision support tools are needed to disseminate and analyse data.

Data generated in drug discovery projects, especially in early

phases, is well understood in terms of structure and range which

makes it well suited to pre-canned analysis. These methods, con-

nected directly to the projects data repository, can update auto-

matically as new data is generated and provide a rapid intuitive

overview. Deeper analysis, with less-structured data, is also crucial

but naturally requires deeper visualisation and analytics expertise.

Universal data repositories and decision support tools also

ensure that everybody in the discovery team is looking at the

same data and using the same analytics methods. This allows

researchers to study new data before joining their colleagues in

multidisciplinary team meetings to explore the data further and

make comparisons with previous results and data from other

sources. Even if the team is able to manage the daily stream of

new data, there are likely to be times when even the best data-

management strategies are put to the test. For example, when a

CRO delivers a large volume of data on a single day (that they

might have spent weeks or months generating) or when the key

decision makers and data scientists in a project leave and new

scientists have to get up to speed. Coping with these additional

demands on data velocity requires skilled data scientists, enabled

to make decisions and with a deep knowledge of the project.

Another potential pitfall is the generation of data at uneven

velocity and the resulting bias on the use of the most readily

available data at the expense of potentially more valuable

resources. For example, co-crystals of NCEs bound to their target

will usually take longer to generate and analyse than primary

biochemical data but might provide valuable insight and direction

for compound design. There must be capacity to modify chemical

plans rapidly as new data become available.
862 www.drugdiscoverytoday.com
Variety
Chemistry has always benefitted from the common nature of its

representations. A chemical formula or structure is universally

understood by researchers, regardless of their language or location.

The digital age, and specifically the proliferation of data formats,

has made this common communication more difficult. A great

deal of a cheminformatician’s time is spent managing this hetero-

geneous data and ensuring they can be used in conjunction with

the equally heterogeneous array of software and databases

employed by various users. The picture grows in complexity when

we also consider the disparate nature of the biological data and

experimental results that you might wish to associate to a com-

pound. This will increasingly include image data, which have their

own management and analysis challenges. Ensuring long-term

availability of data in a world of changing formats and standards

and unpredictable access to commercial software provides addi-

tional headaches to research informatics experts.

External data resources, such as peer-reviewed literature and

patent records, of which drug-design organisations have limited

control, are also poorly suited to supporting data-driven research.

The open access movement is growing and making the final

versions of articles available in increasing numbers, but this is

often done in pdf formats, which poorly support mining and

analysis. As Professor Peter Murray Rust explains in his online

article Data-driven science – a scientists view [14], ‘. . .about 2 million

chemical compounds are published each year (about half in

patents) with insufficient semantics, metadata or hyperstructure.

Vast effort is required to create useful data from these. . .’. Integrat-

ing this information with in-house tools is also not trivial, if

possible at all. The result is an increase in the number of informa-

tion resources the medicinal chemist must regularly access, each

based on their own methodology and with a different user inter-

face. The outcome of this is inevitably information overload.

Furthermore, it is a key goal of data-driven research to find the

hidden patterns and relationships between data points in disparate

resources. As links and interactions are revealed, an ever more

complex network develops that needs to be managed and under-

stood.

Veracity
Naturally, data-driven approaches are dependent on the quality of

the data that underpin them. This provides specific challenges

within pharmaceutical research as a result of the use of surrogate

models in place of human and animal testing. The translation

of results between each level of reduction is fraught. How

well do our biochemical assays reflect activities in cell-based

approaches, and from cells to tissues to whole organisms (mice

and rats > dogs > primates) and eventually humans? As recently

observed, 60% of first-in-class drugs approved by the FDA between

1999 and 2008 resulted from phenotypic (cell based) screening

rather than reductionist biochemical assays [15]. This is a discus-

sion beyond the scope of this review, but the predictiveness of

our experimental data determines the success of the decisions

we base upon it.

Even if we believe in our assays at a conceptual level, there still

remain operational barriers to reliable data creation. Generating

meaningful data requires strictly adhered to protocols and author-

isation steps as well as constant vigilance from users to identify
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errors, systematic failures and the introduction of bias. A recent

article [16] demonstrates some of the common reasons for the

introduction of systematic measurement errors such as precipita-

tion of reagents, variation in sample volume dispensing and plate-

reading errors. Finding and correcting these problems requires

dedicated effort, but is crucial for confidence in data and conse-

quently the decisions we make based on it. It also appears that

statisticians are underused during the earliest research phases

where they could play an important part in the initial design of

assays to ensure data are generated with significance [17–19].

Statisticians are ubiquitous in clinical research but often absent

in preclinical phases where they could play an important part in

calibration and standardisation of protocols and the overall design

and analysis of data. If we are going to improve the output of

preclinical research we must ensure data-driven decisions are

based on statistically rigorous data that requires engagement with

expert statisticians [17].

Given the challenge in ensuring the quality of internally gen-

erated data we might ask how we can have any confidence in

externally generated data. It is certainly important to treat external

data with a certain level of scepticism. How much reliance you

place on external data will depend on the trustworthiness of the

source and the amount of information available to describe how it

was measured and validated. The relatively recent availability of

public databases for chemistry and associated biological activities,

such as PubChem [20–22] and ChEMBL [23,24], is of great benefit

to the community, but we are now seeing the first evaluations of

their quality [25]. Even when we have faith in external data (or

even data generated at different points in the lifecycle of a project),

combining them with other data sources generated in different

laboratories, using slightly different protocols or measured with

different apparatus, poses challenges for data normalisation [26].

Value
In multidisciplinary drug discovery projects it is not possible to

determine in advance which piece of data will result in the valu-

able new design approach or, in fact, the cost effective early

termination of a doomed project. All data should be given equal

weight and consideration. Although it is true that automation,

miniaturisation and parallelisation have greatly reduced the cost

of generating data in drug discovery, especially in the earliest

phases, the rarity and technical difficulty in collecting some

biological samples should ensure collected data are treated with

appropriate value. In many cases, especially in the case of animal

models, failing to extract the greatest value from experiments is

simply unethical.

Within drug discovery organisations (and all scientific pursuits)

it should be unacceptable to begin complex and expensive drug

discovery projects without adequate provision for ensuring that

data are generated with statistical relevance, stored in a manner

that will ensure they can benefit future studies, are communicated

between relevant disciplines and, above all, analysed to ensure the

most value can be extracted.

Data repositories and decision support tools
Undertaking new scientific endeavour, without sufficient focus on

the IT systems needed to underpin these investments, results in

technology islands and should be considered malpractice. Storing
heterogeneous data, in specialist or inaccessible formats, with

insufficient metadata (including protocol details) and in autono-

mous databases, is in contradiction to good data stewardship

practices. Data and their location must be readily identifiable,

searchable and accessible to drug designers, but with sufficient

security to protect intellectual property.

From our own personal experience at Organon (later Schering

Plough, later MSD), we remember biweekly discovery team meet-

ings that began with pharmacologists handing out piles of printed

Excel spreadsheets and curves. This would often be the first time

the various chemists would have seen the data. Different pharma-

cologists in the team would have calculated similar, but crucially

different, curves from the same data resulting in slightly different

conclusions and inevitable confusion. Only the most recent data

would be included and only the data from each pharmacologists

own group. Relating new findings to previous results or from other

groups [drug metabolism and pharmacokinetics (DMPK) or ana-

lytical chemistry for example] relied on the memory of medicinal

chemists and their own spreadsheet summaries of earlier data,

themselves printed and arranged in dossiers. It was a recipe for the

single-parameter decision making and the blind chasing of

potency repeated across the industry.

Compare this situation to the change in practice after the

implementation of Organon’s in-house decision support platform.

The Integrated Project View (IPV) [27], comparable to ArQiologist

[28] from ArQule, ADAAPT [29] from Amgen, OSIRIS [30] from

Actelion and Johnson & Johnson’s ABCD system [31], provided a

single interface to all the biochemical, chemical, pharmacological,

DMPK and analytical chemistry data generated within a project

and was updated nightly. It was available to all researchers at their

desktop and was the primary interface between researchers and

their data. It allowed teams to see aggregated and raw data, under-

take specific queries or browse new data or trends over time.

Furthermore, it linked directly to standardised data analytics tools

providing pre-designed data views common in many projects as

well as enabling more in-depth data analysis.

Design chemists could now follow the latest developments in

their project at their desktops, perform and repeat complex queries

and export data for model building or other purposes. Access to

raw data also helped establish the veracity of some data-driven

decisions and resulted in an increase in the numbers of com-

pounds retested. Researchers were now all working from identical

data with equally rapid access and resulting from the same analysis

tools (curve fitting, among others). The phenomenon of data only

being available on individual computers or memory sticks stored

in desk drawers soon ended with laboratory analysts keen to

upload and certify their data as the future use became apparent.

Anecdotally, it appeared the quality of some experimental work

improved because it was recognised that colleagues were taking

more time to analyse data in the knowledge that they would be

stored and accessible indefinitely. Data had always been gener-

ated following carefully agreed and authorised protocols, but it

became clearer to the data users when the protocol had changed

(for example when moving to a new plate reader, among others)

so that new data could be validated and models updated.

Researchers arrived at team meetings having already gained

familiarity with the new data and viewed them in the context

of previous compounds and related resources. Project meetings
www.drugdiscoverytoday.com 863
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became increasingly data-driven and the printed spreadsheet a

thing of the past.

Cyber commons
One consequence of teams becoming dependent on the decision

support platform was the need to make it available in team meet-

ings. It was also recognised quickly that access to data alone was

not sufficient to support decision making. It was still necessary for

experts, particularly those generating data, to give their opinions

following the maxim that ‘behind every data point is a story’. It

was therefore decided to create a project and data visualisation

suite to support cross-disciplinary research and data-driven deci-

sion making (Fig. 3). The facility, named the ‘war room’, after

Winston Churchill’s Cabinet War Rooms, was a crucial step in

ensuring project meetings became a data-driven pursuit. The same

tools available on the researchers desktop were now available to

the team in a shared environment allowing people from each

discipline to contribute their ideas and opinions during the design

and analysis process.

The concept of the advanced project working and data visua-

lisation suite, sometimes referred to as cyber commons or col-

laboratoriums, is growing in popularity with examples reported

at organisations such as Proctor & Gamble and Monsanto.

These facilities are distinct from the 3D visualisation rooms

common in pharma organisations and are characterised by their

focus on data analysis and project work. It is important that

technologists appreciate that, despite the rapid growth in the

power of computers, they still require humans to provide ima-

gination and creativity. A cyber common, integrated into the

regular research process, can play an important part in enabling

data-driven and multidisciplinary research by bringing together

research disciplines, but dos not replace the various informal
FIGURE 3

The advanced visualisation and multidisciplinary project meeting room at Organ

864 www.drugdiscoverytoday.com
networks that develop between collaborating colleagues over

time [10].

Knowledge workers and data scientists
There is also a danger in the increasingly complex world of early

drug discovery that scientists become increasingly specialised,

focused only on their specific subdiscipline and the networks they

maintain therein. As stated earlier, discovery is increasingly made

at the interface of disciplines by collaborative researchers from

multiple fields. We need to develop more broad-oriented scientists

able to bridge disciplines and with a deep understanding of the

drug discovery process and the generic scientific skills in data

analysis and visualisation to exploit these insights.

People able to assimilate multiple conflicting data sources and

identify trends and potential areas to exploit are rare and should be

given suitable credit within their organisations. They are undoubt-

edly in demand in other industries. Digital scientists, able to work

at the interface of their own scientific disciplines, data resources

and advanced computing, are currently highly sought after. They

should also be key members of drug discovery projects, with deep

knowledge of medicinal chemistry, undertaking the most difficult

analysis and building the key models for the project. This repre-

sents just the latest evolution of the informatician in drug dis-

covery. Originally, synthetic chemists began to recognise the value

of computational tools in managing and exploring chemical data

and began the first computer-aided drug design groups. A second

generation followed, with more-formal training in programming,

able to develop the algorithms and software that still underpin

many of the mostly widely used tools today. More recently, owing

to the growing maturity and professionalisation of tools, the need

to program has become less crucial and computational medicinal

chemists are characterised by the ability to hop between different
Drug Discovery Today 
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tools and approaches as required by their projects. This continuing

evolution will now be towards data specialists able to extract the

most value from disparate data sources with perhaps more focus on

understanding the implications of experimental data and less on

ab initio prediction.

In addition to the need for data-specialists, there is a need for all

researchers to become data scientists or knowledge workers [32],

able to incorporate data analysis into their entire decision making.

The researchers making the design decisions within projects

should be the most knowledgeable of the data related to it. In

the past this might have been manageable via spreadsheets and a

good memory (although we doubt this was ever truly satisfactory),

but the changing scientific landscape requires medicinal chemists

to embrace data-driven methods to improve output in the future.

Although there clearly remain technical and financial obstacles to

expanding data-driven medicinal chemistry practices, perhaps the

biggest challenge will be developing the necessary behaviour and

actions within drug-design teams.

Data-driven decision making
With the exception of the talent, experience and imagination of

the researchers themselves, a project’s data resource is its greatest

asset and should be treated with the respect that it deserves. That

means building confidence in the quality of that data by con-

stantly searching for discrepancies and errors in the experimental

method. Unusual activity should be queried and retested if neces-

sary, and models constantly updated and challenged by new

findings with more emphasis placed on identifying trends and

less on chasing outliers.

Above all we must require and stimulate project teams to make

decisions based on data and to learn from previous experience [33].

This should be the case even if those data are at odds with

conventional wisdom. For this to be possible the project team

must be able to identify all the data and issues that are pertinent to

the question at hand and not become overly focused on the most

recent or easy to interpret data. At the same time, teams must avoid

searching for data that support their predefined hypothesis. It is

too easy to turn into a dogma an observation made early in a

project, or from historical medicinal chemistry practice, that is not

supported or is actually contradicted by the data. Perhaps the

biggest challenge is for project teams to balance the need to change

direction based on new trends in data, without every new data

point becoming the basis for a new strategy. Projects have to learn

to look for trends and patterns in data rather than reacting to each

individual result as it becomes available. New data must be ana-

lysed in the context of earlier results and design decisions under-

taken logically and without presumption.

Synthetic medicinal chemists are, for legitimate operational

reasons, under a great deal of pressure to deliver quickly and

cheaply on their projects. The result of this pressure is that they

become trapped between two worlds. They wish to make their

design decisions with a strong molecular basis and from compel-

ling data, but too often feel the need to generate large numbers of

compounds quickly at the expense of rationale [34]. Whereas in

reality a combination of careful rational design and rapid chemical

exploration is probably desirable, there is a danger that too often

the balance is shifted too far towards ease of synthesis [35], which

is unsurprising given the typical synthetic background of most
medicinal chemists and their management. It will be interesting to

see if the profile of senior medicinal chemists does change to

reflect the growing biological chemistry and informatics compo-

nents of the discipline.

When asked how they make their design decisions most medicinal

chemists will describe chemical intuition as a key factor [36].

Although we recognise the importance of imagination and creativity

in the chemical design process, that intuition should be guided by the

available data and not conducted in isolation. Other contributing

factors to the design process include the previous experience of the

medicinal chemist and organisation (what worked before) [34],

knowledge of the biological target (from a structure-based or

ligand-based basis) and their personal toolboxes (their preferred

reactions) [37,38]. Each of these three considerations can be

enhanced within an organisation by good knowledge management

practices. The more experience chemists have to draw from and the

better their knowledge of their targets the less likely they will overly

base decisions on synthetic ease. The use of wikis [35,39] and social

media type approaches [40], as well as numerous other IT approaches

to manage drug discovery and particularly synthesis planning

(reagent selection, library design, among others) [41–47], is growing

rapidly. We are even seeing the first descriptions of mobile apps to

support medicinal chemistry and drug-discovery [48].

Another important development in recent years has been the

use of a variety of metrics to quantify the progression of optimisa-

tion projects [33]. Ligand efficiency methods [49] and related

approaches such as size-independent ligand efficiency [50], lipo-

philic ligand efficiency [51] and enthalpic efficiency [52] are all

important drivers to help ensure drug-design decisions follow

strategies that balance physicochemical parameters with efficacy.

Retaining knowledge
The process of drug discovery has undoubtedly become more

complex in recent years as a result of an increase in the diversity

and specialisation of technologies embedded within the process.

An unfortunate consequence of the increased dependence on

process-driven research has been an unspoken decrease in the

value of individual researchers. This is perhaps most clearly

demonstrated during the continued rounds of merger and reor-

ganisation that persist in the pharmaceutical industry. The

rationalisation that takes place when merging large research

organisations tends to be dominated by the desire to optimise

previous technology investments and maintain the newest (and

typically largest) machinery. One molecular biologist or medic-

inal chemist is considered to be of similar value to any other

without consideration for their knowledge or experience. Scien-

tific breakthroughs tend to result from a combination of human

knowledge and institutional knowledge contained within under-

lying processes and resources [10]. It cannot be a surprise that

reducing the human knowledge component from the drug dis-

covery process, in favour of ever larger technical capacity or

islands of cheap outsourcing capacity, will have a negative effect

[53]. The constant mergers throughout the industry might

improve the pipelines and balance sheets of companies in the

short term but can undermine capacity for drug discovery [54].

The recent years of corporate mergers has probably resulted in

the loss of huge amounts of practical knowledge when data-

stewardship practices have been insufficient.
www.drugdiscoverytoday.com 865
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Even during more stable times, experienced chemists retire or

take on other roles. Ensuring their tacit knowledge is retained and

shared throughout an organisation is challenging but can be

achieved if their work has been well documented over time.

Mining ELNs and corporate databases provides a huge opportunity

to identify trends in the actions of medicinal chemists and increase

our understanding of the decisions they make. We know that

chemists are subjective in their decision making [33,36,41,55],

which suggests that they could benefit from more-objective direc-

tions derived by knowledge-based exploration of earlier data.

Lipinski’s seminal paper [56], profiling 2245 molecules to iden-

tify the shared properties of orally available drugs, represents an

important step in the shift towards data-driven drug design [57].

Various datasets have since been analysed in various ways to define

properties determining drug-likeness [51,58,59] and lead-likeness

[58,60], or to identify compounds with a particular character such

as capacity to cross the blood–brain barrier [61,62] or with an

increased potential to target a particular protein class: kinase-

likeness [63–66] or G-protein-coupled receptor (GPCR)-likeness

[66–68]. Identifying bioisosters from previous projects [69–71],

frequent hitters [72,73] that pollute HTS results or potential tox-

icophores [74–76] has been a key strategy of academic and com-

mercial cheminformatics groups over the past 15 years. The more

data available to base these analyses upon the better their pre-

dictive power. For pharmaceutical companies, the potential to

combine public data with their in-house resources has increased

the breadth of chemical series analysed which increases quality

and future predictivity of models. Recent developments in the

availability of open data are fuelling the big data revolution and

ensuring that knowledge-based methods continue to grow in

importance in medicinal chemistry.

Open data enabling data-driven research
In addition to the large amounts of data being generated intern-

ally within pharmaceutical companies there is also a rapid

growth in the extraction, curation and dissemination of publicly

available data of value to drug designers [77]. Although some

public data are submitted to well-maintained sustainable data-

bases, the majority is buried in unstructured publications, typi-

cally made available in pdf format and extremely difficult to

incorporate into other analyses. For example, small molecule

crystallographers submit their coordinates and metadata to the

Cambridge Structural Database (CSD) [78] and structural biolo-

gists submit their X-ray and NMR structures to the Protein Data

Bank (PDB) [79,80], but publication of new chemical series in

medicinal chemistry journals or patents does not require similar

submission. The Chemical Abstract Service (http://www.cas.org/

) has the goal to ‘find, collect and organise all publicly disclosed

chemical substances’ but does not record related biological data.

As a consequence, large initiatives such as PubChem and

ChEMBL are needed to curate the chemical literature, build

databases and extract structures and related metadata from

publications [81]. However, neither PubChem nor ChEMBL aims

to curate all chemical and related information and therefore our

access to data is incomplete. It is also the case that extracting

data from publications is a less desirable approach than the

submission of data, in a structured manner, by authors at the

time of publication or before.
866 www.drugdiscoverytoday.com
Given the importance of data and intellectual property to the

competitive advantage of pharma companies, we do not foresee

the total move from closed to open innovation [82] but do believe

pharma will find benefits from tapping into the ‘open’ world and

utilising tools, data and approaches within their own processes.

Examples already exist for Novartis [83], Pfizer [84] and AstraZe-

neca [85] developing applications that combine public data,

patents and proprietary data to provide a single view on the

available chemical landscape.

Working with public data raises many technical challenges

related to their integration with a company’s own proprietary

data. Public data will have invariably been measured on different

machines with differences in reagents and protocols so how can we

trust it is a complete and correct record? Integrating external and

internal data therefore requires us to develop improved methods

of data normalisation and comparison [86]. This big data challenge

will have the side benefit of improving how we manage our

internal data – often measured on different machines and with

modified protocols over the length of a long drug discovery project.

Data reduction, visualisation and analytics
A consequence of the increased complexity, variety and volume of

the datasets present in research has been a new concentration on

the development of visualisation and analytics approaches [87].

There is a requirement to find ways to interact better with data by

reducing their complexity and presenting them in a readily inter-

pretable fashion. Data reduction and comparison approaches

based on statistical approaches such as principal component ana-

lysis, linear regression, K-means clustering, Bayesian methods, hier-

archical clustering and cross-validation underpin the most common

data-analytic approaches such as predictive modelling (supervised

learning), cluster analysis, data mining (unsupervised methods) and

decision trees. Fortunately, these are also the methods that have

underpinned model building and analysis in computational chem-

istry since its inception. Most pharmaceutical companies therefore

already have expert teams of data scientists able to develop and

apply these approaches. The challenge remains however to use

novel and intuitive approaches to visualise results [86,88,89] and

ensure visualisation and analytics is embedded in the process.

As the number of NCEs, and associated data, increases in each

project it has become necessary for computational chemists to

move away from studying compounds individually and instead

study trends and patterns in properties. This is perhaps a return to

an earlier time when QSAR dominated computer-assisted drug

design. A commonly cited failing of computer-assisted drug design

has been an inability of computational chemistry to keep up with

the speed of modern synthesis and testing. Visual comparison of

small numbers of compounds or co-crystals will still be important

but we can expect the computational chemist to spend an increas-

ing amount of time studying graphs, infographics and other forms

of data representation as they try to make sense of large datasets at

the same pace that synthesis and testing is undertaken.

Concluding remarks
Increasing the capacity of medicinal chemistry to undertake data-

driven research has the potential to improve decision making in

drug discovery and ensure the most benefit can be derived from

the data produced internally and available externally. The rapid

http://www.cas.org/
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increase in available data, the so-called big data era, makes harnes-

sing these resources and optimising our research processes a pre-

requisite for future success. Data repositories are crucial to manage

distinct data resources with a single user-friendly interface com-

mon to all project team members. Technicians should be rewarded

for the rapid and consistent addition of their data to such a

resource with senior management taking responsibility for the

quality of these data. Analysis tools should be streamlined with the

repository and adequate training provided to all users. In addition

to providing data and analysis tools to individual researchers it is

also crucial to support project work by making the same tools and

data available during team meetings via project rooms tailored to

data-intensive decision making at the group level.
ie
w

It is however a mistake to consider harnessing big data to be a

purely technical challenge. We need to improve the information

literacy of medicinal chemists at a faster rate than we are currently

doing so, and also ensure project teams are empowered and

capable of data-driven decision making. All researchers, including

medicinal chemists, will have to become comfortable working in

data-rich environments. At the same time, there will be a growing

need for data specialists, probably drawn from existing informatics

departments, to build complex models and make connections

between disparate data sources. The move towards data-driven

drug design is an evolution of our existing approaches, rather than

a revolution, but is required to ensure the most is gained from

current investments in R&D.
R
ev
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