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Cantilever dynamics in 
atomic force microscopy
Dynamic atomic force microscopy, in essence, consists of a vibrating 
microcantilever with a nanoscale tip that interacts with a sample 
surface via short- and long-range intermolecular forces. Microcantilevers 
possess several distinct eigenmodes and the tip-sample interaction 
forces are highly nonlinear. As a consequence, cantilevers vibrate in 
interesting, often unanticipated ways; some are detrimental to imaging 
stability, while others can be exploited to enhance performance. 
Understanding these phenomena can offer deep insight into the physics 
of dynamic atomic force microscopy and provide exciting possibilities for 
achieving improved material contrast with gentle imaging forces in the 
next generation of instruments. Here we summarize recent research 
developments on cantilever dynamics in the atomic force microscope.
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Since the invention of the atomic force microscope (AFM)1, 

dynamic atomic force microscopy (dAFM) has become one of 

the most important tools in nanotechnology with its unmatched 

capabilities of: (i) measuring topography and physico-chemical 

properties of organic and inorganic materials at nanometer length 

scales in a variety of ambient media; and (ii) the manipulation and 

fabrication of a variety of functional nanostructures. Moreover, 

in dAFM materials are probed with gentle forces by means of an 

oscillating nanoscale tip that intermittently interacts with the 

sample. These capabilities have propelled dAFM into a leading tool 

that allows the experimentalist to directly ‘see’ and ‘touch’ at the 

nanoscale.

Broadly speaking, dAFM can be classified into frequency 

modulation2 (FM) AFM – also known as noncontact AFM – and 

amplitude modulation3 (AM) AFM – also known as tapping-mode or 

intermittent contact AFM. In FM-AFM, the phase of oscillation and tip 

amplitude are held constant by means of feedback circuits, while in 

AM-AFM the drive frequency is held constant and the tip amplitude is 

maintained constant by means of active feedback. This article focuses 

mostly on cantilever dynamics in AM-AFM.

The interest in the dynamics of AFM, especially its nonlinear 

aspects, initially grew out of observations of instabilities in dAFM that 

occur at certain oscillation amplitudes4. A deeper understanding of 

cantilever dynamics is becoming increasingly important in two of the 
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biggest growth areas of dAFM: (i) the manipulation and imaging of 

soft matter, especially in biology; and (ii) the accurate quantification of 

sample properties in materials science. This requires the development 

of a new generation of AFM with greatly reduced imaging forces and 

improved material contrast. In moving toward this major goal in dAFM, 

a number of research groups and companies are devoting considerable 

research efforts to control, tune, or exploit cantilever dynamics to 

reduce imaging forces and develop new modes to improve material 

contrast and sensitivity. The purpose of this article is to review these 

latest developments in cantilever dynamics in the AFM and present an 

outlook of the future of these developments in the next generation of 

dAFM.

Eigenmodes of AFM cantilevers
AFM microcantilevers are fabricated from single-crystal Si or Si3N4, 

and possess a sharp conical or pyramidical tip near their free end 

with which to probe the sample surface. Just like a taut string 

possesses many eigenmodes of vibration each with its own natural 

frequency, so too do AFM microcantilevers. The intent of any dAFM 

system is to drive the microcantilever externally into a resonance of 

a specific eigenmode. Thus, it is instructive to understand what the 

eigenmodes of AFM microcantilevers are and how they are used in 

dAFM.

In Fig. 1, three AFM microcantilevers are shown including (a) a stiff 

rectangular cantilever (~50 µm long), (b) a soft rectangular cantilever 

(~290 µm long), and (c) a soft triangular cantilever (~125 µm long) for 

biological applications in liquids. As can be seen, the vibration spectrum 

contains distinct peaks corresponding to the mechanical resonances 

of the cantilever or of the dither piezo; under ambient conditions, 

the quality (Q) factors of the microcantilever resonances are usually 

much larger than those of the piezo resonances, thus allowing one to 

distinguish between those peaks. 

The main eigenmodes consist of bending modes (denoted B1, B2, 

etc.) transverse to the plane of the cantilever and the torsion modes 

(denoted T1, T2, etc.) where the Tn or Bn mode (n = 1,2,...) contains 

n–1 vibration nodes along the axis of the cantilever. However, 

sometimes the lateral bending modes L1, L2, etc. can also be observed 

where the cantilever bends in its plane laterally. The greater the mode 

number, the larger the resonance frequency and Q-factor and the 

greater its spatial modulation. 

When a microcantilever eigenmode is excited by tuning the drive 

frequency to the eigenmode’s natural frequency, the tip motion should 

oscillate harmonically, like clockwork, with a well-defined motion. If 

a bending mode Bn (n = 1,2,...) is excited, ideally the sharp tip should 

oscillate perpendicular to the surface, while if one of the torsion modes 

Tn (n = 1,2…) is excited, then the tip should oscillate tangentially to 

 Fig. 1 Experimentally measured operating deflection shapes (ODS) or eigenmodes of several AFM cantilevers. Each cantilever chip was mounted onto a dither piezo, 

excited, and scanned with the Polytec MSA400 system. The plots show the measured vibration spectrum corresponding to the blue square on the cantilever shown 

on the right. The nomenclature used denotes the type of resonance and the mode number corresponding to that resonance, e.g. B1 represents the first bending 

mode, T1 represents the first torsion mode. Note that the piezo resonance denoted P, observed in the spectrum of the tapping mode lever, is clearly indicated by the 

excessive base motion and small relative motion between the tip and base. Some eigenmodes couple the torsion and bending motions, such as in the T2B4 peak for 

the force modulation lever and the B4T1a,b peaks for the triangular cantilever. Sometimes the lateral bending modes Ln (n = 1,2,...) where the cantilever vibrates 

laterally in its plane couple to torsion motions and the coupled lateral-torsional modes are denoted as LT modes. For rectangular cantilevers, such eigenmodes often 

arise when (i) the resonance frequencies of a torsional and bending (or lateral) mode are closely spaced and (ii) the tip mass located eccentrically with respect to 

the cantilever axis couples these motions. On the other hand, for triangular cantilevers, asymmetry between the two arms of the triangle can cause the two peaks 

(B4T1a,b) representing coupled bending-torsion modes where the vibration is localized in one of two arms.
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the sample surface. For the most part, the eigenmodes and resonance 

frequencies of rectangular AFM microcantilevers can be predicted using 

simple Euler–Bernoulli beam theory modified to account for the tip 

mass5. However, as shown in Fig. 1, some eigenmodes actually couple 

torsional and bending motions or torsional and lateral motions5–7. Such 

coupled modes are denoted as bending-torsion (BT) or lateral-torsional 

(LT) modes (Fig. 1). If such coupled modes are excited, the tip moves 

both tangentially and normally to the sample surface.

There has been a surge of interest in these higher modes of AFM 

microcantilevers, especially in the development of new imaging modes. 

For instance, in torsion mode or shear force AFM8–12, a pure torsional 

or lateral bending mode of the AFM cantilever is excited ensuring 

that the tip oscillates tangentially to the surface. This mode enables 

the measurement of lateral force gradients, frictional contrasts at the 

nanoscale, and can also be used for imaging purposes. On the other 

hand, higher order bending modes are also gaining significant interest 

because their Q-factors are very high (Fig. 1) and their dynamic 

stiffness8,13–16 is also very high. Consequently, it becomes possible to 

drive a tip with very small amplitudes, comparable to the decay length 

of short-range forces, which in turn enables atomic-scale resolution.

Mathematical simulations of cantilever 
dynamics
When an oscillating AFM microcantilever is brought close to a sample, 

the tip-sample interactions greatly influence the cantilever dynamics. 

Realistic tip-sample interaction force models are critical for accurate 

simulation of the interaction of AFM cantilevers with samples. A variety 

of tip-sample interaction force models are available, from the Lennard–

Jones model to continuum-based models to force models based on 

ab initio molecular dynamics or quantum mechanics simulations17. 

In particular, the Derjaguin, Müller, and Toporov (DMT) continuum 

model18 is often used to simulate dAFM for stiff samples with low 

adhesion and small tips. The DMT model considers noncontact van der 

Waals forces and Hertzian contact forces. 

Models governing the dynamics of AFM cantilevers generally involve 

one of two simplifications: (i) assuming that the cantilever bends as if a 

static point load is being applied at the cantilever’s free-end and using 

the corresponding static stiffness to derive a single degree of freedom 

point-mass model19–23; or (ii) discretizing the classical beam equation 

based on its eigenmodes leading to either single or multiple degrees 

of freedom models24–31. While the former approach is incapable 

of modeling higher flexural modes, nonunique modal masses and 

stiffnesses have been reported in the latter approach, which is cause 

for concern19, 32–34. As described by Melcher et al.16, unique equivalent 

masses and stiffnesses can be systematically determined by equating 

the kinetic energy, potential energy, and virtual work of a continuous 

probe to that of an appropriate point-mass model (Fig. 2). The resulting 

equation of motion for a base-excited cantilever may be written as: 

Mi
eqq

..
 + (Mi

eqωi/Qi)q
. 

+ Ki
eqq  = Fts + Ki

eq y
i
eq  (1)

where Fts is the tip-sample interaction force, q is the tip deflection 

(with dots representing time derivatives), Mi
eq, Ki

eq, and yi
eq are the 

equivalent mass, stiffness, and excitation, respectively, and Qi is the 

experimentally observed quality factor for the ith bending mode. Eq 1 

forms the basis of most mathematical simulations of dAFM, and 

assumes that while higher harmonics of excitation frequency may 

be present in the cantilever vibration, one dominant eigenmode 

is sufficient to describe the cantilever’s dynamic motion28. As will 

be described later in this article, there are situations where this 

assumption no longer holds. 

Mathematical simulations of eq 1 are frequently used to study the 

dynamics of the AFM tip as it approaches or retracts from a sample. 

Through such simulations, researchers have investigated attractive 

and repulsive regime oscillations35, power dissipation processes36,37, 

capillary forces38,39, and peak interaction forces34. Cantilever dynamics 

also influence images taken using dAFM. Scanned images in dAFM are 

actually a cumulative result of several effects related to the cantilever 

dynamics, tip-sample interaction forces, and controller dynamics40,41. 

When the mathematical model in eq 1 is appended with a model of a 

lock-in amplifier and a feedback control law, mathematical simulations 

of the scanning process can be performed. Such simulations help 

in the interpretation of scanned images and image artifacts42–44. 

From a broader point of view, cantilever dynamics in dAFM are quite 

nonintuitive. Where intuition fails, mathematical simulations can 

provide a valuable insight into the cantilever dynamics and tip-sample 

interactions.

While the benefits of simulations in dAFM are legion, accurate 

simulation tools for dAFM are inaccessible to most experimentalists.  

Recently, a suite of such freely accessible, high-fidelity, research-grade 

simulation tools for dAFM called VEDA: Virtual Environment for Dynamic 

AFM has been deployed on the nanoHUB (www.nanohub.org) – the 

web portal for the Network for Computational Nanotechnology (NCN). 

VEDA simulations (Fig. 3) are run off the national teragrid or other 

 Fig. 2 Equivalent point-mass representation of a continuous AFM cantilever 

oscillating in a single eigenmode. The continuous cantilever is characterized by 

linear mass density, ρc, elastic modulus, Ec, area moment, Ic, and length, Lc. 

The corresponding point-mass model is characterized by equivalent stiffness, 

Ki
eq and mass Mi

eq. For acoustic excitation, the continuous cantilever is given a 

base motion, y, while the point mass observes an excitation yi
eq. Finally, the tip 

deflection, q, and the influence of tip-sample interaction forces, Fts(d,d
.
) are 

identical in both models.

http://www.nanohub.org
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large computing clusters. To access VEDA, users need only register on 

nanoHUB, and search for and launch the VEDA tools‡.

Nonlinear dynamics and chaos
The cantilever dynamics in AM-AFM are highly nonlinear because 

typical tip oscillation amplitudes (>5 nm) are larger than the decay 

lengths associated with short-range interaction forces (<1 nm). Thus, 

cantilever dynamics cannot be predicted by linearizing interaction 

forces about an equilibrium position. 

Early studies4 on the dynamics of oscillating AFM tips near 

a surface show an interesting hysteresis in both the amplitude 

and phase response as the drive frequency is increased and then 

decreased across the cantilever’s resonance. Later, it was observed 

experimentally21 that the same hysteresis is found when a cantilever 

approaches and then retracts from a surface at a fixed drive frequency. 

It has been proposed21 that this behavior is the result of a transition 

between two stable oscillation regimes of the microcantilever. 

Subsequent studies have attempted to explain this phenomenon in 

terms of attractive and repulsive forces and correlate it to imaging 

stability. Wang45,46 has applied the Krylov–Bogoliubov–Mitropolsky 

asymptotic approximation to predict the bistable amplitude response 

and compare the predictions to experiments (Fig. 4a). Nony et al.23 

and Boisgard et al.47 have used a variational principle of least action 

to explain the hysteresis in amplitude-distance curves. García and 

San Paulo35,48–50 have demonstrated by numerical simulation the 

coexistence of two stable oscillations states in AM-AFM, the large 

amplitude state is termed the net repulsive regime, while the lower 

amplitude state is called the attractive regime. An investigation of the 

bifurcations and stability of the oscillations in AM-AFM have been 

performed by Rützel et al.29, Lee et al.30,51, and later by Yagasaki52. 

This bistable oscillatory behavior has elicited tremendous interest 

since it directly correlates to imaging instabilities. For instance, 

bistable behavior creates the possibility that the cantilever amplitude 

is identical at two different stand-off distances from the sample. This 

can lead to the feedback controller ‘hunting’ between these two stand-

off distances to maintain constant amplitude, thus creating serious 

imaging artifacts48,49. 

‡ The tools are supplemented by a well-documented user manual, as well as learning 
modules and tutorials in breeze format. At the time of publication, more than a 
thousand VEDA jobs have been run.

F ig. 3 Overview of VEDA (now available on www.nanohub.org). VEDA accurately simulates probe tip dynamics in dAFM and currently includes two simulation 

tools for dAFM: a dynamic approach curves (DAC) tool, which simulates an AFM probe excited near a resonance and approaching/retracting from a sample, and 

an amplitude modulated scanning (AMS) tool, which simulates closed-loop scans over heterogeneous samples in tapping mode. Both tools have been developed 

for ambient conditions with DMT interaction models, but VEDA will soon expand to include liquid environments, more complex interaction forces, and eventually 

molecular dynamics simulations. Snapshots from the graphical user interface (GUI) are shown for (a) the DAC tool and (b) the AMS tool. (c) A DAC simulation of 

the amplitude and phase of a Si AFM probe while approaching (bold) and retracting from a soft sample surface demonstrating attractive and repulsive regimes of 

oscillation consistent with the published literature76. (d) Measured topography of a Si feature simulated by the AMS tool for different scanning speeds.

(c)(a)

(b) (d)

http://www.nanohub.org
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In AM-AFM, it is also possible under some circumstances for the 

cantilever to undergo chaotic oscillations. Ashhab et al.53,54 and 

Basso et al.55 have used Melnikov theory to predict the existence 

of homoclinic chaos in a point-mass model of the AFM cantilever. 

Homoclinic chaos refers to a mechanism of chaos that can occur 

in a single-degree-of-freedom oscillator possessing one unstable 

equilibrium and two stable equilibra56. More specifically, it can 

occur in an appropriate range of damping and excitation when a 

particle lies in a twin-well energy potential – a situation typically 

observed when a soft cantilever is brought very close to a sample. 

The physical manifestation of this chaotic motion is that the tip 

chaotically switches between oscillating around two stable positions, 

one where the tip equilibrates under a small attractive force and 

another where it is ‘stuck’ to the sample. A more typical situation 

for AM-AFM is when the cantilever tip lies in a single-well potential 

and intermittently dynamically interacts with the sample. In contrast, 

van der Water and Molenaar57, Hunt and Sarid58, Berg and Briggs59, 

and Dankowicz et al.60 have all predicted the onset of subharmonic 

 Fig. 4 Nonlinear dynamic phenomena in dAFM. (a) The coexistence of two stable oscillating states (one in the net repulsive and the other in the attractive regime) 

can be seen while keeping an AFM probe close to a surface and sweeping the drive frequency up and down across resonance. Tip amplitude and phase of oscillation 

are plotted45. Solid black curves are the theoretically predicted stable response; dashed lines are unstable solutions; open circles are experimentally measured 

data using a stiff 40 Nm–1 Si cantilever on a polyethylene sample. (b) Chaotic oscillations of soft Si cantilevers on a graphite substrate set in during transition from 

the attractive to repulsive regimes of oscillation and then again at low setpoint ratios. Power spectra of the cantilever vibration are shown when the B1 mode is 

excited near the surface and the setpoint amplitude is decreased by increasing the drive voltage. Chaotic spectra are characterized by subharmonic peaks and 

broadband ‘noise’ below 150 kHz. Insets show error maps taken of a graphite substrate when the tip is oscillating periodically and chaotically, indicating that chaotic 

dynamics can introduce small but measurable uncertainty in nanometrology64. (c) Theoretical simulations76 showing the higher harmonics expected in the vibration 

frequency spectrum when a 52 kHz rectangular Si cantilever taps on a fused silica sample. Also shown below are images taken using multiple higher harmonics in 

air of a Pt–C layer on a fused silica cover slip SiO2 grating. Clearly the higher harmonic images provide additional material contrast beyond what is observed in the 

topography image. (Reproduced with permission from45,64,76. © 1998 American Institute of Physics, 2006 and 2005 American Physical Society, respectively.)

(b)

(a) (c)
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motions and chaos in AM-AFM based on impact oscillator models of 

AM-AFM or using the theory of grazing bifurcations in nonsmooth 

systems. Sasaki et al.61 also theoretically predict the existence 

of quasiperiodic oscillations, as well as fractional resonances. 

Experimentally, both Burnham et al.62 and Salapaka et al.63 have 

reported the observation of subharmonics and chaos-like motions in 

experiments where vibrating samples are made to impact a stationary 

cantilever. However, it has not been until recently64,65 that the 

onset of chaotic motion in AM-AFM has been systematically studied 

experimentally. It has been shown that chaotic oscillations set in for 

soft cantilevers when the tip initially transitions from the attractive 

to the repulsive regime of oscillation and then again when they are 

driven hard at low setpoint amplitudes (Fig. 4b)64. The onset of chaotic 

motions in AFM cantilevers under realistic operating conditions can 

lead to small but measurable ‘deterministic’ uncertainty in nanoscale 

measurements.

Nonlinear dynamic phenomena have also provided many 

opportunities for improving sensitivity and material contrast. For 

example, it was observed early on that when a harmonically driven 

cantilever is brought in close proximity to a surface its harmonic 

motion is mixed with higher harmonic distortions because of nonlinear 

tip-sample interactions66,67. Physically, the cantilever oscillates in the 

shape of its driven eigenmode but in time its oscillations contain higher 

harmonics. In principle, then, the higher harmonics contain detailed 

information about the tip-sample interaction potential. This idea has 

driven research and it is now reasonably well understood how the 

higher harmonics can be used to get information back out about the 

tip-sample interactions24,67–73. Beyond the goal of the reconstruction 

of interaction forces (or force spectroscopy), it was quickly recognized 

that higher harmonics could also be used to enhance material contrast 

during imaging. By mapping the magnitudes of higher harmonics over 

a sample, it becomes possible to obtain sensitive material property 

contrasts for imaging in liquids66,74 and in air75,76 (Fig. 4c) and also to 

achieve subatomic contrast in low temperature AFM under ultrahigh 

vacuum (UHV) conditions77. 

In the absence of tip-sample nonlinear forces, the microcantilever 

eigenmodes are orthogonal to each other, meaning that the motion 

in each eigenmode can be considered independent of the motion in 

another eigenmode. However, in the presence of nonlinear tip-sample 

interaction forces, and when the natural frequencies of two different 

eigenmodes are close to the specific rational ratio of each other78, it 

becomes possible for two eigenmodes to couple in the microcantilever 

response. This interesting nonlinear modal interaction phenomenon 

is also known as internal resonance in the nonlinear dynamics 

community78. For example, Sahin et al.79–81 and Balantekin and 

Atalar82 first demonstrated this theoretically and experimentally by 

fabricating cantilevers for which the B2 or T1 eigenmode frequencies 

are very close to an integer multiple of the B1 natural frequency. 

When such a cantilever is driven at a resonance of the B1 eigenmode 

and brought close to the sample, some higher harmonics of the drive 

frequency are able to excite the B2 or T1 modes in a sensitive fashion. 

This then allows the sensitive measurement of nanomechanical 

properties using a specialized cantilever. 

Another approach has been to excite the B1 and B2 eigenmodes 

of a cantilever simultaneously83–85. The nonlinear modal interactions 

between the two eigenmodes are such that the phase of the second 

eigenmode turns out to be very sensitive to variations in tip-sample 

interaction forces. Moreover, there is evidence that the attractive-

repulsive bistability described earlier is significantly reduced when 

B1 and B2 are excited simultaneously86. This dual-mode excitation 

method shows potential as a means of achieving high material contrast 

with gentle forces; however, the analytical and theoretical foundations 

of this method are not fully developed yet and remain a focus of 

current research. 

Finally, a third category of nonconventional resonances used in 

dAFM is that of parametric resonance87. Parametric resonance is a 

phenomenon that underlies the physics of swings and water waves. 

In order to achieve it in dAFM, the microcantilever stiffness needs to 

be modulated at a frequency nearly twice its natural resonance. This 

has been achieved by means of an electronic feedback circuit and 

an extremely sharp non-Lorentzian peak is obtained87. Samples can 

be imaged at normal scan speeds without any ringing artifacts that 

are commonly associated with high Q-factor scans. The complete 

theoretical basis for this method is still under development.

Cantilever oscillations in liquids
As mentioned earlier, one of the most important and growing 

applications of AM-AFM is the imaging and nanomechanical 

measurements of soft biological matter in physiological buffer 

solutions. The potential of using AM-AFM in liquids was recognized 

in the early nineties and two important driving modes – the acoustic 

excitation mode88,89 and the magnetic mode90 have been established. 

In the acoustic mode, vibrations of the dither piezo are transferred 

to the cantilever mechanically (structure-borne vibration), as well as 

indirectly through the fluid (fluid-borne vibration). In the magnetic 

mode, a cantilever with a magnetic film sputtered onto it is excited 

magnetically by a solenoid. The fundamental differences in cantilever 

dynamics between these two excitation modes are insignificant in air 

but become quite significant in liquids because of the low Q-factors of 

the cantilevers91–93. 

The surrounding liquid also serves to modify the ‘wet’ resonance 

frequency (cantilever resonance frequency in liquid) and Q-factor of 

resonance, especially when the cantilever is moved close to a sample 

surface. Predicting the hydrodynamics of cantilevers near a substrate 

has been a focus of many research groups and has been based broadly 

speaking on: (i) ad hoc, but intuitive, models94; (ii) computational 

solutions using the boundary element method of the unsteady Stokes 

equations in two and three dimensions95–98; and (iii) transient, fully 
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coupled fluid-structure interaction calculations using Navier–Stokes 

equations99 (Fig. 5a). Broadly speaking, when a cantilever is brought 

close to a surface in a liquid medium, the Q-factors and wet resonance 

frequencies of the different eigenmodes decrease significantly (Fig. 5b). 

The rate of decrease with the gap depends strongly on the eigenmode 

of interest and also on the orientation of the cantilever relative to the 

surface (Fig. 5b). 

While the dynamics of a microcantilever tapping on a sample is 

well understood under ambient or UHV conditions, the tip motion 

for AM-AFM in liquids has been studied to a lesser extent. Previous 

attempts at mathematical modeling of tip dynamics in liquids have 

used a Lennard–Jones type interaction potential66,100, an exponentially 

growing force101, or a discontinuous interaction force102. In all cases 

it has been observed that, unlike in air, when a tip taps on a sample 

in liquids, significantly higher harmonics are generated and the tip 

motion distorts noticeably from a sine wave. More recently103, it has 

been shown that the second bending mode plays a significant role in 

tip motion in liquids. Specifically, it has been shown that when a tip is 

excited in the B1 eigenmode and taps on a sample in a liquid medium, 

the B2 eigenmode is also excited momentarily at the point of tip-

sample impact. All these studies are beginning to answer important 

questions about cantilever dynamics in liquid environments for AM-

AFM applications. However, cantilever dynamics in liquids remain much 

less well understood than in air or vacuum.

Outlook
Two decades have passed since the invention of the AFM, but it has 

been only in the last eight years or so that a significant advance 

has taken place in understanding cantilever dynamics in dAFM. As a 

consequence of these studies, new imaging modes have emerged in 

the last two to three years that are based on a deep understanding 

of cantilever eigenmodes and nonlinear dynamics in dAFM. The 

dramatic improvements in imaging contrast or reduction in imaging 

forces afforded by these new modes are a worthy testament to 

the importance of cantilever dynamics in dAFM. Needless to say, 

the surface has only been scratched as far as the understanding of 

cantilever dynamics is concerned, especially under liquids. 

The coming decade is likely to see further advances in the 

understanding of cantilever dynamics and a significant translation 

of technology toward the development of the next generation 

of AFMs. Based on the trends over the past years, it seems 

reasonable to assume that the greatest impact of cantilever 

dynamics in dAFM will lie in (i) applications to significantly 

improve the quantitative mechanical/electrical/magnetic property 

sensing using dAFM, (ii) applications for the development of new 

hydrodynamically streamlined AFM probes for applications in liquids, 

and (iii) the continued development of new modes for improved 

contrast with piconewton imaging forces for biological applications in 

liquids.  

 Fig. 5 Cantilever dynamics in liquids. (a) Computational three-dimensional flow-structure model of a rectangular Si cantilever (197 µm × 20 µm × 2 µm) close 

to a surface in water using the finite element code ADINA. (b) ADINA-computed Q-factors of B1 (circles), B2 (diamonds), and T1 (squares) modes99 showing 

that the Q-factors (and wet resonance frequencies – not shown) decrease rapidly upon decrease of the gap. The rate of decrease depends on the mode number 

and the orientation of the cantilever (dashed lines are for a cantilever oriented at 11° to the sample surface), (c) when soft Si cantilevers are excited in the B1 

eigenmode using magnetic excitation with an initial amplitude of ~12 nm and brought close to a mica sample in water103 then (d) the tip oscillation waveform 

distorts significantly and often shows that the B2 mode is momentarily excited near tip-sample impact events. The significant harmonic waveform distortion in liquids 

while tapping samples is observed for both hard and soft samples and is characteristic of cantilever dynamics in liquid environments. (Reproduced with permission 

from99,103. © 2006 and 2007 The American Institute of Physics, respectively.)

(b)(a)

(c) (d)
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