Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment

Chun-Wei Peng, Xiu-Li Liu, Chuang Chen, Xiong Liu, Xue-Qin Yang, Dai-Wen Pang, Xiao-Bo Zhu, Yan Li

Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No. 169 Donghu Road, Wuchang District, Wuhan 430071, PR China

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences and State Key Laboratory of Virology, Wuhan University, Wuhan 430072, PR China

Wuhan Jiayuan Quantum Dots Co., Ltd., and Wuhan Tumor Nanometer Diagnosis Engineering Research Center, Wuhan 430074, PR China

Abstract

Tumor growth and progression depends on their microenvironment, which undergoes constant co-evolution because of the dynamic tumor-stromal interactions. Such co-evolution has long been under appreciated due to the lack of appropriate technology platforms to simultaneously reveal these complex interactions. Here we report on a quantum dots based multiplexed imaging and spectrum analysis technology to simultaneously study major components of tumor stroma, including type IV collagen, tumor angiogenesis, macrophages in filtration and tissue destructive proteolytic enzyme matrix metalloproteinase 9. The new technology revealed a panoramic picture of the tempo-spatial co-evolution of tumor cells and their stroma at the architecture level. Four patterns of tumor invasion with distinctive co-evolution features were identified as Washing pattern, Ameba-like pattern, Polarity pattern and Linear pattern. This quantum dots based multiplexed technology could help gain new insight into the complex process of tumor invasion, and formulate new anti-cancer strategies.

Keywords: Quantum dots, Tumor microenvironment, Cancer invasion, Multiplexed imaging, Nanomedicine

1. Introduction

Invading tumor cells in vivo are confronted with three-dimensional (3D) extracellular matrix (ECM) networks that form physical barriers against the advancing cells [1]. Traditionally, invading depth is the center of attention, and few studies have concurrently focused on the dynamic co-evolution of the cancer cells and stroma. It has been recognized that invasion is regulated not only by intrinsic genetic changes in cancer cells as ‘initiators’ of carcinogenesis, but also by stromal cells as ‘promoters’ [2,3]. A seminal event in cancer progression is the ability of invading cells to migrate through tissue barriers particularly the basement-membrane, a specialized form of ECM that separates the epithelium from the stroma [4]. This process requires the co-evolution of cancer microenvironment that includes several simultaneous events, such as up-regulation and activation of proteolytic enzymes such as matrix metalloproteinases (MMPs), remodeling of ECM barrier (ECMB) mainly by cleaving and re-patterning type IV collagen, tumor angiogenesis, and recruitment and conversion of immune cells [5]. In recent years, the ECMB has been recognized as an important regulator of cell behavior, not only just a tissue structure scaffold. The ECMB mediates tissue compartmentalization and sends signals to epithelial cells about the external microenvironment [6]. Human cancer is especially complex because it evolves over a long time course and shows a multitude of molecular, cellular, and architectural heterogeneity [7,8]. Neither the studies at purely molecular and cellular levels, nor the studies at the purely clinical level can decipher the co-evolution of cancer microenvironment. At the architectural level, however, major critical molecular and cellular events and stroma changes can be visualized, revealing a real-time panoramic picture of the co-evolution of cancer cells and their microenvironment [9]. Unfortunately, such co-evolution of cancer microenvironment has long been under appreciated due to the lack of appropriate technology platforms to reveal the dynamic spatiotemporal processes.

Quantum dots (QDs) are engineered nanoparticles with unique optical and electronic properties which have potential applications ranging from medicine to energy [10,11]. Compared with organic...
dyes and fluorescent proteins, QDs have unique features such as size- and composition-tunable light emission, enhanced signal brightness, resistance to photobleaching [12–14]. In addition, different QDs colors can be simultaneously excited by a single light source, with minimal spectral overlapping, which provides significant advantages for multiplexed detection of targets. This property is very suitable for investigating the co-evolution of cancer cells and tumor microenvironment at the architectural level, a key issue in studying the

Fig. 1. Fluorescent imaging and quantitative analysis of ECMB in breast and gastric cancers. (A1–B3) Type IV collagen imaging in breast cancer (A1–A3) and gastric cancer (B1–B3) with QDs-585 probe. The spatial relationship between cancer cells and ECMB were indicated (red arrows). (C1–C3) Control slides without QDs staining. (D) A model demonstration of quantitative ECMB analysis. The thickness of ECMB at sites 1, 2, 4, 5 and 6 is 18.23 µm, 29.88 µm, 63.52 µm, 24.71 µm, 9.07 µm and 10.54 µm, respectively. Diminished ECMB could be observed at the site of potential cancer invasion (site 5). (E) Actual performance of quantitative ECMB analysis, with serial numbers indicating the sites of measurement. The real thickness of ECMB at sites 1, 2, 4, 5 and 6 is 16.90 µm, 7.75 µm, 1.85 µm, 8.72 µm, 4.40 µm and 29.80 µm, respectively. The ECMB between nest 1 and nest 2 is degraded at the invasion front (red arrow, 3.28 µm). Magnification: 100× (A1, B1, C1), 200× (A2, B2, C2, D, E), 400× (A3, B3, C3); Scale bar: 100 µm (A1, B1, C1), 50 µm (A2, B2, C2, D, E), 20 µm (A3, B3, C3).
mechanisms of cancer progression and also in developing more specific targeting therapeutic approaches [3,15−17].

In this work, we report on a new strategy to directly reveal the co-evolution of cancer cells and their microenvironment on human cancer tissues in order to gain better insights into the complex and dynamic biology of cancer invasion. Four common invasion patterns in 15 cases of gastric cancer specimens and 10 breast cancer specimens were revealed by QDs-based fluorescent imaging and spectrum analysis of type IV collagen. In addition, major components involved in the critical processes of cancer invasion were revealed simultaneously by multiplexed QDs imaging. This new multiplexed QDs mapping provides new spatiotemporal information on the co-evolution of cancer cells and microenvironment.

2. Materials and methods

2.1. Human cancer tissue specimens

Formalin-fixed paraffin-embedded tumor tissues from 15 gastric cancer patients and 10 breast cancer patients were obtained from the Department of Oncology, Zhongnan Hospital of Wuhan University (Wuhan, China). Tissue sections (4 μm thickness) were preheated at 60 °C for 1 h and were then de-paraffinized in xylene 3 times each for 5 min. Tissue hydration was carried out by a series of immersion steps at decreasing ethanol concentrations (100, 95, 95 and 85% ethanol for 5, 3, 3...
and 3 min, respectively), followed by rinsing in water for 5 min. The slides were pretreated in 0.01 M citrate buffer (pH 6.0) and heated at 98 °C for 10 min for antigen retrieval. After cooling in the citrate buffer for another 25 min at room temperature, the tissue slides were washed in water and stored in 1 × TBS plus buffer (containing 0.05% Tween 20) until use.

2.2. QDs-based immunohistochemical study of tumor microenvironment

The primary antibodies were rabbit anti-human polyclonal antibody against type IV collagen (ab-6586, Abcam, England, dilution 1/100), mouse anti-human monoclonal antibody against macrophages (MA1-38069, ABR, USA, dilution 1/200), goat anti-human polyclonal antibodies against MMP9 (sc-13595, Santa Cruz, USA, dilution 1/50) and CD105 (sc-20072, Santa Cruz, USA, dilution 1/50) for neovessels. The QDs probes were secondary antibodies conjugated with QDs on the F(ab')2 fragments, including QDs-525 (QDs-525 goat F(ab')2 anti-mouse IgG conjugate, Invitrogen, USA, dilution 1/100), QDs-585 (QDs-585 goat F(ab')2 anti-rabbit IgG conjugate, Invitrogen, USA, dilution 1/100), QDs-655 (QDs-655 rabbit F(ab')2 anti-goat IgG conjugate, Invitrogen, USA, dilution 1/100). The QDs-based immunofluorescent imaging of type IV collagen, macrophages, MMP9 and CD105 were conducted as previously described in prepared tissue slides [14]. For multiplexed QDs staining, a mixture of 3 primary antibodies from 3 species (e.g. mouse, rabbit and goat) was used to recognize 3 antigens in tissue sections. A mixture of 3 QDs probes was applied to stain the corresponding antibodies for 1 h at 37 °C.

2.3. Signal acquisition

The slides were examined under Olympus BX51 fluorescence microscope equipped with an Olympus DP72 camera (Olympus Optical Co., Ltd., Tokyo, Japan) and CRI Nuance multispectral imaging systems (Cambridge Research & Instrumentation, Inc., Woburn, MA, USA). The QDs-525, QDs-585 and QDs-655 were excited by ultraviolet light (330–385 nm). The QDs images were captured by DP72 camera. A spectral cube for each slide, which contains the complete spectral information at 10-nm wavelength intervals from 490 to 720 nm were collected by CRI Nuance systems. All the cubes were captured under the same condition at proper magnifications, which could make it more accurate and representative in tumor markers assay.

2.4. Spectrum analysis and biomarker quantification

Deconvolution algorithms were applied to image each cube, generating a set of “single-color” images representing each individual QDs/biomarker and the tissue autofluorescence. The QDs colors were converted to pseudocolors for graphic

Fig. 3. Patterns of invasion. (A) Washing Pattern. (A1–A3) Washing pattern in breast cancer (A1, A2) and gastric cancer (A3). (A4–A6) Spectrum analysis of washing pattern in breast cancer including (A4) fluorescent image, (A5) spectral signal of QDs-585 extracted from (A4), and (A6) unmixed image. In this pattern, the ECMB becomes unsmooth (A1), and thinner at some sites (A2, A3, Red arrows), but remains continual and structurally intact. Magnification: 100 × (A3), 400 × (A1, A2, A4, A5, A6); Scale bar: 100 μm (A3), 20 μm (A1, A2, A4, A5, A6). (B) Ameba-like Pattern. (B1–B3) Ameba-like pattern in breast cancer (B1, B2) and gastric cancer (B3). (B4–B6) Spectrum analysis of Ameba-like pattern in breast cancer including (B4) fluorescent image, (B5) spectral signal of QDs-585 extracted from (B4), and (B6) unmixed image. In this pattern, the inner layer of ECMB at one site is degraded, and cancer cells invade into the ECMB (Yellow arrows) but the outer layer of ECMB remains continual and intact (Red arrows). With the spectrum imaging, the ECMB is shown more clearly that an invasion space is created due to type IV collagen degradation. Magnification: 400 × (B1, B3, B4–B6), 200 × (B3); Scale bar: 20 μm (B1, B3, B4–B6), 50 μm (B3). (C) Polarity Pattern. (C1–C3) Polarity pattern in breast cancer; (C4–C6) Spectrum analysis of polarity pattern in breast cancer including (C4) fluorescent imaging, (C5) spectral signal of QDs-585 extracted from (C4), and (C6) unmixed image. In this pattern, type IV collagen in the tumor-invasion front polarity is disrupted (Red arrows). However, the ECMB remains continual and intact. There may be more than one polarity in a cancer nest (C2, C4, C5, C6). Magnification: 400 × (C1–C6); Scale bar: 20 μm (C1–C6), 200 μm (C2). (D) Linear Pattern. (D1–D3) Linear pattern in breast cancer. (D4–D6) Spectrum analysis of linear pattern in breast cancer, including (D4) fluorescent imaging, (D5) spectral signal of QDs-585 extracted from (D4), and (D6) unmixed image. In this pattern, fibers of type IV collagen have multiple proteolytic foci (the thickness of ECMB in the areas of 1, 2, 3 and 4 is 0.77 μm, 2.06 μm, 0.86 μm and 4.35 μm, respectively) but eventually become clipped at a single site, thereby the invading cancer cells migrate in one direction mainly along a line (Red arrows). In other areas the ECMB remains continual and intact. Magnification: 400 × (D1–D3); Scale bar: 20 μm (D1–D3).
visualization or emphasis. The QDs fluorescence signal information of cubes for each slide was analyzed by the image analysis software package (CRi Nuance) within the Nuance system. The fluorescent signal intensity and distribution areas of QDs probes in cancer tissues were calculated based on spectral unmixing. Feature extraction and pattern recognition algorithms were used to identify areas of interest and whole slide. Biomarker expressions in these identified areas were quantified by pixel-based intensity measurement, with a computer-generated threshold obtained from experimental data and was used for background subtraction.

3. Results

3.1. Fluorescent staining and spectrum analysis of ECMB

In this study, the ECMB constraining the cancer cells was visualized by staining type IV collagen, the most abundant constituent of the ECM, with QDs-S85 probe in breast cancer (Fig. 1A1–A3) and gastric cancer (Fig. 1B1–B3) tissues. It has been observed that the ECMB is an amorphous, dense, and sheet-like structure of 1.85 μm–63.52 μm in thickness. The spatial relationship between cancer cells and type IV collagen in the ECMB indicates that cancer cells may contact the ECMB closely (Fig. 1A3) or away from the ECMB (Fig. 1B3). The loss of local constraints in tumor microenvironment can be quantitatively measured at the micrometer level. ECMB becomes thinner at the sites of potential cancer invasion. Furthermore, the properties of type IV collagen around the border of each cancer nest, such as continuity, smoothness, integrity, and thickness can be well defined more clearly by spectrum analysis (Fig. 2A1 and B1). These features combined could help define the spatial relationship between cancer cells and stroma. Spectrum analysis is a new method to provide more accurate information than conventional fluorescent techniques. With the unique advantage of QDs, the spectrum of collagen around the cancer cells could be extracted accurately. Hiding points of ECMB degradation could be discovered even though ECMB itself appeared structurally intact (Fig. 2B3 and C3). The CRi Nuance software automatically separates the slide into 1336 ROI (region of interest), and the total signal of the slide is 214657.2 (Fig. 2C5). The loss of ECMB could be calculated by quantifying the signal of type IV collagen at different areas of ECMB. In the suspected area 1 of ECMB degradation (Red arrows), the total signal (390.298) is lower than in area 2 (749.838) (Fig. 2C4).

3.2. Patterns of invasion

We studied the spatial relationship between cancer cells and stroma at tumor-invasion front with combined imaging method of type IV collagen we had established. Four patterns of invasion with distinctive cancer cell-stroma interactions were observed, including washing pattern, ameba-like pattern, polarity pattern and linear pattern (Fig. 3). All patterns were summarized by fluorescent imaging (3 micrographs on the left column of each figure) and validated by spectrum analysis (3 micrographs on the right column of each figure). In the washing pattern (Fig. 3A), cancer cells erase ECMB everywhere without specific degradation focus, like waves brushing the dike on the beach. The ECMB becomes unsmooth and thinner, but remains structurally continual and intact. In the ameba-like pattern (Fig. 3B), after breaking the inner layer of ECMB, cancer cells invade into ECMB along the inner space of collagen on both sides to form an ameba-ulcer-like invasion tunnel. The outer layer of ECMB remains continual and intact. In the polarity pattern (Fig. 3C), cancer cells proliferate with polarity, and the collagen at the tumor-invasion front is compressed and hydrolyzed to reduce the ECMB, forming a potential invasion tunnel. The ECMB diminishes and becomes progressively thinner in

Fig. 4. QDs-based fluorescent imaging of important components in tumor microenvironment. (A) Type IV collagen recognized by QDs-585 conjugated antibody nano-probe (Red arrow). (B) Neovessels stained by QDs-655 conjugated anti-CD105 antibody recognizing endothelial cells (Red arrow). (C) Infiltrating macrophages stained by QDs-525 conjugated nano-probe (Red arrow). (D) MMP9 stained by QDs-655 conjugated nano-probe (Red arrow). MMP9 is mainly expressed in the cytoplasm of cancer cells. Magnification: 200× (A, B), 400× (C, D); Scale bar: 50 μm (A, B), 20 μm (C, D).
the polarity. In the linear pattern (Fig. 3D), cancer cells hydrolyze the ECMB at one focal point, gain access into the ECMB, and create a line of invasion pathway. Type IV collagen breaks down abruptly at a point, through which only a few cancer cells cross (Fig. 3D). Occasionally, invasion may have already occurred before the ECMB degradation becomes evident (Fig. 3D4–D6).

3.3. Immunolabelling of components in tumor microenvironment

To simultaneously evaluate the dynamic changes in tumor microenvironment related to cancer invasion, including type IV collagen (Fig. 4A), endothelial cells (Fig. 4B), macrophages (Fig. 4C), and tissue destructive proteolytic enzymes MMP9 (Fig. 4D), all of which are important components of tumor stroma and involved in the ECM remodeling, tumor angiogenesis, and immune cell infiltration.

3.4. Multiplexed QDs imaging

In order to simultaneously visualize these components in tumor microenvironment and gain new insights into the complex interaction between cancer cells and stroma, we established a multiplexed QDs imaging method (Fig. 5). For spectrum analysis, different colors of QDs can be simultaneously excited by ultraviolet light and there is no spectral overlapping (Fig. 5D). Tumor angiogenesis, macrophages infiltration and the ECM remodeling were visualized more clearly and accurately in the ECM between two gastric cancer glands with spectrum analysis (Fig. 5A1–C2). The new method makes it possible to analyze the spatiotemporal process of invasion, and to reveal features of cancer invasion.

Several histopathological features were revealed by multiplexed QDs imaging. First, MMP9 is mainly expressed near the ECM where macrophages infiltrated, but ECMB maintains continual (Fig. 6A1 and A2). Second, ECM undergoes compression and remodeling before being broken, accompanied with tumor angiogenesis and macrophages infiltration at the leading edge (Fig. 6B1 and B2; Fig. 7A1 and A2). Third, tumor angiogenesis occurs hand in hand with ECMB degradation, however, when the ECMB is lost, no neovessels is found (Fig. 6C1 and C2). Fourth, high density of macrophages and neovessels are observed at the interface of tumor nest and stroma (Fig. 6D1 and D2). Another remarkable finding is that tumor angiogenesis may occur in tumor parenchyma near the infiltrating macrophages (Fig. 6D3). Fifth, the perivascular ECM is degraded at the interface with cancer cells, cancer cells intravasate into the vessels even though the ECMB is continual (Fig. 7A1 and A2). Interesting, macrophages of bone marrow-derived cells (BMDCs) extravasate from the vessels at the same point at the same time (Fig. 7B1 and B2).

3.5. The co-evolution of cancer cells and tumor stroma

Multiplexed QDs imaging highlights the temporal co-evolution relationship between cancer cells and ECMB in each invasion pattern that can not be evaluated by single staining. In the washing pattern, successive waves of cancer cells induce progressive conditioning of the microenvironment to facilitate cancer cells spreading along a plane rather than deep penetration. Tumor angiogenesis is the
major event in cancer progression (Fig. 8A). In the ameba-like pattern, extensive changes of tumor microenvironment may have occurred in the adjacent tissue even though the local tumor border is intact. Corresponding to the cancer cells invasion, type IV collagen in the inner layer of ECMB is broken and macrophages infiltration and tumor angiogenesis appear at the leading area (Fig. 8B). In the linear pattern, a few coordinated “pioneering cancer cells” form deep penetrating invasion tunnels along a line, paving the way for follower cancer cells. In this process, cancer cells would finally intravasate into neovessels, which is the hallmark in cancer progression (Fig. 8C). In the polarity pattern, simultaneous coordinated polarization of cancer cells at the leading edge of tumor front may cooperate in invasion by constantly changing the local microenvironment. Macrophages infiltration and tumor angiogenesis coexist with ECMB remodeling (Fig. 8D).

4. Discussion

Cancer progression is not an entirely cell-autonomous process. Instead, Darwinian evolution of tumors and resulting clinical progression are influenced, and perhaps even driven, by changes that occur in the tumor microenvironment [18]. A seminal event in cancer progression is cancer invasion, the ability of the neoplastic cells to transmigrate the surrounding extracellular matrix barriers while orchestrating a host stromal response that ultimately supports tissue-invasive and metastatic processes [4]. Structure and molecules are determinants in cancer progression [19]. Although the molecular mechanism of individual cell migration in the process of invasion was intensively studied [1], the architectural changes are only now beginning to be understood. Using conventional H&E staining and cancer nest borderline mapping, Friedl et al. summarized the structural changes of collective cancer cell migration as sheets, strands, clusters or ducts [20,21]. However, the real dynamic interactions of cancer cell-stroma are poorly understood in terms of temporal and spatial changes of the tumor microenvironment.

Unlike most other collagens, type IV collagen is an exclusive constitutive of the basement-membrane and through a complex inter- and intra-molecular interactions form supramolecular networks to influence cell adhesion, migration, and differentiation [6]. Using combined imaging method of type IV collagen, we here
report a new method to study the spatial relationship between cancer cells and stroma at tumor-invasion front. With the unique advantages of QDs, the properties of type IV collagen around the bounder of each cancer nest, such as continuity, smoothness, integrity and thickness can be well defined. In addition, the loss of local constraints in tumor microenvironment can be quantitatively measured. Four patterns of invasion with distinctive cancer cell-stroma interactions were observed, including washing pattern, ameba-like pattern, polarity pattern and linear pattern. In the washing pattern, successive waves of cancer cells induce progressive conditioning of the microenvironment to facilitate cancer cells spreading along a plane rather than deep penetration. In the ameba-like pattern, extensive tissue destruction may have occurred in the adjacent tissue even though the local tumor border was intact. Therefore, invasive tunnels may have already developed beneath the seemingly intact tumor margin. In the polarity pattern, simultaneous coordinated polarization of cancer cells at the leading edge of tumor front may cooperate in invasion by constantly changing the local microenvironment. In the linear pattern, a few coordinated “pioneering cancer cells” form deep penetrating invasion tunnels along a line, paving the way for follower cancer cells. Two models of invasion were hypothesized according to the ECMB status that indicates the spatial variation in cancer progression, including barrier evasion model and barrier failure model, that similar to our results [18]. But more details were revealed in our study. Briefly, barrier failure model like the washing pattern, while barrier evasion model is similar to the other patterns in our study. Among these four patterns, washing pattern may correlate with best prognosis as
crossing ECMB occurs relatively late. In contrast, linear pattern may reflect the worst prognosis because cancer cells may have already deeply penetrated the ECM in spite of the density of the surrounding type IV collagen and such cancer may have already become a potentially systemic disease even if it is diagnosed as early stage by conventional pathology. By cleaving collagen fibers and re-patterning them into parallel bundles, individual cells reorient the ECM to permit movement in tunnel-like microtracks. Cells along the edge of these tunnels can excavate ECM outward, generating macrotracks through which collective mass movement of cancer cells can occur [22].

The formation of a clinically relevant tumor requires support from the surrounding normal stroma, also referred to as the tumor microenvironment [23]. Carcinoma-associated fibroblasts, leukocytes, BMDCs, blood and lymphatic vascular endothelial cells present within the tumor microenvironment contribute to tumor progression. Tumor microenvironment varies temporally and plays different roles in different stages of cancer. It has been evident that although cancer cells and some traditionally proteins account for invasion and metastasis are no different, the primary tumor microenvironment, the invasive microenvironment and the metastatic microenvironment are different [24]. In the temporal variation of tumor microenvironment, tumor angiogenesis, ECM remodeling and immune cell infiltration are critical events in the cancer progression.

Although the critical role of the dynamic and reciprocal interactions between tumor cells and their microenvironment has been documented, such study performed by incorporating solitude study as the simultaneous visualization of those essential events is impossible for technical barrier. In our preliminary study, the co-evolution process was evaluated by staining MMP9, macrophages, type IV collagen and endoglin (CD105), respectively [25]. Multiplexed imaging, which holds the great promise to overcome the barrier, allows high degree of sensitivity and selectivity in cancer imaging with multiple antigens that are not available from traditional H&E and IHC [26]. QDs is a new class of nanoparticle probe showing the potential to revolutionize biological imaging, including multiplexed imaging, due to their intense fluorescent signals and multiplexing capabilities [9,27]. This study established a novel protocol for QDs-based multiplexed imaging on complex clinical cancer tissues. Different colors of QDs were simultaneously excited by a single light source, with minimal spectral overlapping. Multiplexed QDs imaging permits not only the visualization of the spatial but also the temporal process of the co-evolution of cancer cells and their microenvironment.

This study takes a holistic approach to investigating such variations in tumor microenvironment during cancer invasion. In addition to studying the invading cancer cells, major players in the tumor microenvironment are also closely identified and studied concurrently, by QDs-based simultaneous quantitative imaging of major constitutes of ECMB (collagens, tumor infiltrating macrophages, MMPs and tumor angiogenesis). Such an approach could help us look at the picture of cancer invasion from the perspectives of not only cancer cells but also their microenvironment, gaining new insights into this complex and critical cancer event. Five histopathological properties were suggested by multiplexed QDs

![Fig. 8.](image) The features of four patterns of invasion identified by incorporating the temporal dimension. (A) Washing Pattern. The ECMB is degraded and becomes thinner that similar to the results in Fig. 3. The thickness of ECMB at areas 1, 2, 3, and 4 is 18.65 μm, 12.88 μm, 10.96 μm and 8.67 μm, respectively. Though the ECMB is still continual, lots of neovessels appear in the ECMB. (B) Ameba-Like Pattern. The inner layer of ECMB is broken accompanied with tumor angiogenesis. Cancer cells migrate along the fibers toward the direction rich in macrophages and neovessels. (C) Linear Pattern. Cancer cells directly invade into the neovessel, the diameter of which is less than 20 μm (Scale bar, 20 μm). Macrophages extravasate from the vessels. No type IV collagen is visible in the contact surface. (D) Polarity Pattern. Cancer cells proliferate with polarity, and ECMB is degraded at the leading edge. Macrophages infiltration and tumor angiogenesis coexist with ECMB remodeling which is not failed. Magnification: 400× (A, C), 200× (B, D); Scale bar: 20 μm for (A, C); 50 μm for (B, D).
imaging. Though those properties may exist in the four patterns of invasion mentioned above, which were summarized only by analyzing the spatial relationship between cancer cells and stroma, the four patterns are different incorporation of the temporal dimension. In the washing pattern, tumor angiogenesis is the major event in cancer progression. While in the polarity pattern, macrophages infiltration and tumor angiogenesis coexist with ECM remodeling but not failure. In the ameba-like pattern, type IV collagen is broken and macrophages infiltration and tumor angiogenesis coexist. In the linear pattern, intravasation into neovessels is the hallmark in cancer progression.

All the results indicate the co-evolution of cancer cells and tumor microenvironment that can not be explained by the variation of only one component. Although it has been poorly understood tissue dynamics that shift cell and ECM interfaces during collective invasion, invasive growth in the absence of active invasion, study focused on cell migration demonstrated that the process of ECM regression in response to an expanding cell compartment is consistent with the epithelial tumour progression also can be induced in vitro by changing ECM mechanics or altering cytoskeletal tension generation through mediated control of capillary cell growth and angiogenesis, which are equally critical for cancer progression and metastasis [31,32]. Tumour angiogenesis is the process of new blood vessel formation which is regarded as one of the hallmark of cancer growth and metastasis. Tumour angiogenesis is tightly regulated by a balance between endogenous proangiogenic and antiangiogenic factors to maintain homeostasis in tissue [33–35]. ECM can promote tumor angiogenesis by releasing matrix-bound growth factors that inherent to those processes. However, ECMB acts as a repository not only for growth factors, but also for antiangiogenic factors. The noncollagenous domain 1 (NC1 domain) is the C-terminal domain of collagen. In several types of collagen, proteolytic cleavage from the parent molecule can release the NC1 domain that can inhibit tumor angiogenesis. Furthermore, the NC1 domain can also exert adhesive, pro-migratory, proapoptotic and survival effects [36,37]. Angiogenesis may not occur when there is rich in NC1 domain as a result of the complete degradation of the ECM. Apart from the non-cell factor, parenchymal, endothelial cells, and immune cells present within the tumor microenvironment contribute to tumor progression, including angiogenesis [5]. Tumor-associated macrophages (TAMs) are a prominent inflammatory cell population in many tumor types residing in both perivascular and avascular, hypoxic regions of these tissues [38]. Analysis of TAMs in human tumor biopsies has shown that they express a variety of tumor-promoting factors and evidence from transgenic murine tumor models has provided unequivocal evidence for the importance of these cells in driving hypoxia, angiogenesis, lymphangiogenesis, immunosuppression, and metastasis [39,40].

5. Conclusion

The microenvironment within a tumor represents a complex dynamic exchange between cancer cells and their surrounding stroma which requires carefully designed models in order to understand the role of its stromal components in carcinogenesis, tumor progression, invasion, and metastasis. Lack of suitable models that faithfully reproduce the normal tissue architecture and microenvironments poses a challenge for functional studies aimed at testing hypotheses built based on observations in human tissues. We have developed here an imaging method, based on the powerful properties of QDs, to study the co-evolution of cancer cells and tumor stroma at the architectural level. We have identified four patterns of tumor invasion by incorporating the temporal and spatial dimensions. Multiplexed QDs imaging should enhance the development of preventative and therapeutic interventions that specifically target microenvironmental alterations.

Acknowledgments

This work is supported by The Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 20621502, 20921062), Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD-200464) and “the Fundamental Research Funds for the Central Universities” (No. 4103005) of Ministry of Education of China.

Appendix

Figures with essential color discrimination. All the figures in this article may be difficult to interpret in black and white. The full color images can be found in the on-line version, at doi:10.1016/j.biomaterials.2010.12.053.

References