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Cancer can be controlled effectively by using chemotherapeutic drugs to inhibit cancer stem cells, but

there is considerable inter-patient variability regarding how these cells respond to drug intervention. Here,

we describe a statistical framework for mapping genes that control tumor responses to chemotherapeutic

drugs as well as the efficacy of treatments in arresting tumor growth. The framework integrates the

mathematical aspects of the cancer stem cell hypothesis into genetic association studies, equipped with a

capacity to quantify the magnitude and pattern of genetic effects on the kinetic decline of cancer stem cells

in response to therapy. By quantifying how specific genes and their interactions govern drug response, the

model provides essential information to tailor personalized drugs for individual patients.
Introduction
The discovery of cancer stem cells in malignancies of hematopoie-

tic origin and in some solid tumors has changed our vision of the

biological processes involved in carcinogenesis and chemothera-

peutic practices. Just as normal cells are maintained by self-renew-

ing stem cells, malignant tumors are produced through the

mutations of stem cells and their subsequent proliferation [1–5].

For example, leukemia is believed to arise from a stem cell that

gives rise to a large population of clones that proliferate into

malignancies. Therefore, by developing specific therapies targeted

at cancer stem cells, malignant tumors can be controlled and

prevented and, finally, eradicated through blocking the recurrence

of cancer cells [6–8].

To make it effective to treat cancer based on the cancer stem cell

hypothesis, two essential questions need to be addressed. First, how

can we distinguish cancer stem cells from cancer non-stem cells in

terms of their origin, property and function [3]? Second, through

which mechanisms do cancer stem cells respond to chemothera-

peutic drugs [9]? The availability of genetic, genomic and proteomic

expression data provides an unprecedented opportunity to detect
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and define expression patterns of cancer stem cells and predict the

clinical outcome of patients who receive a particular drug therapy

[10,11]. By contrast, mathematical modeling has exemplified

increasing vitality to uncover and explain many still unknown

aspects of cell behavior, tissue function and network organization

[12–14]. More recently, an avalanching interest has emerged in

applying differential equations to quantify the proliferation and

differentiation of normal stem cells and cancer stem cells and detect

the differences of these two types of cells [14,15].

Wang et al. [16] have for the first time integrated expression data

with mathematical models to identify genes and proteins or their

expression patterns that are linked with the formation, prolifera-

tion and programming of cancer stem cells. This integration can

potentially lead to understanding of the genetic and molecular

mechanisms of carcinogenesis and the complexity of its progress

and dynamics. Here, we argue that the model described by Wang

et al. can be reformed to map genes that control the response of

cancer stem cells to chemotherapeutic drugs. The new model is

constructed on a mapping approach – systems mapping – by

incorporating chemotherapeutic drug efficacy that describes the

kinetic reduction of abnormal cell populations in response to

therapy [17,18]. It provides an analytical tool to test the temporal

effects of genes on drug response and can be used to assess the

efficacy of treatments in arresting tumor growth.
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Systems mapping
The formation of phenotypic traits is one of the most complex

processes in nature. Traditional approaches for genetic dissection

of complex traits is to associate genetic variation with phenoty-

pic variation in a trait measured at a particular time point. These

approaches have proven to be instrumental for identifying quan-

titative trait loci (QTLs), but they have not considered the com-

plexity and dynamics of phenotypic formation. A new

computational model, known as systems mapping, has been

recently developed to enhance the biological relevance of QTL

mapping [19]. Systems mapping views a complex phenotype as a

dynamic system, dissects it into its underlying interconnected

components and organizes and connects different components

through mathematical equations in biological laws [20,21]. By

mapping specific genes that govern each component and its

mutual connections with other components, this model has a

capacity to help understand not only the behavior of the com-

ponents but also how these components act together to form the

behavior of the whole. As a bottom–top model, a systems

approach can identify specific QTLs that govern the develop-

mental interactions of different components that lead to the

function and behavior of the system. By estimating and testing

mathematical parameters that specify the system, systems map-

ping enables the prediction or alteration of the physiological

status of a phenotype based on the underlying genetic control

mechanisms.

Genetic mapping of complex traits is constructed by a mixture

model in which different mixture components are presented

by QTL genotypes that are segregating among individuals in a
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mapping population [22,23]. Because QTLs cannot be observed

directly, the proportions of mixture components are specified by

conditional probabilities of QTL genotypes given observable

marker genotypes. Phenotypic values of individuals carrying a

particular QTL genotype are assumed to follow a distribution

function, such as the normal distribution, characterized by

expected mean (denoted as the genotypic mean) and variance.

Systems mapping embeds a system of ordinary differential equa-

tions (ODEs) into a genetic mapping setting containing dynamic

measures of phenotypic values. Unlike traditional approaches

that estimate genetic effects directly, systems mapping specifies

and estimates genotype-specific mean vectors by ODE parameters

and a covariance matrix by a parsimonious statistical model.

Mathematical tools, like the fourth-order Runge–Kutta algo-

rithm, have been incorporated to estimate ODE parameters for

individual QTL genotypes contained within a mixture-model

framework [24,25]. Structural approaches have been used to

model the covariance matrix for longitudinal traits, which

include (i) parametric stationary [26], (ii) parametric nonstation-

ary [26,27], (iii) nonparametric [28] and (iv) semiparametric

models [28]. Each of these approaches has advantages and dis-

advantages regarding computing efficiency, flexibility and power.

Mapping QTLs for chemotherapeutic efficiency
Mathematical models for efficacy of a chemotherapeutic drug
Based on the cancer stem cell hypothesis [29], Ganguly and Puri

[12] described a basic model for healthy and cancer stem cell

pathways (Fig. 1). Normal stem cells (SC) are of two types, one

that performs self-renewal with a probability, PSC, and the other
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that differentiates into early progenitor cells (EP). The self-renewal

probability of SC depends on itself as well as EP and late progenitor

cell (LP) populations. Part of the EP self-renews a number of times.

The LP undertakes dLP stages of cell division and produces mature

cells (MC). The number of cell division stages is controlled by a cell

division regulatory feedback signal to sustain a steady population

of MC. The MC also provides a feedback to the SC to influence their

mitotic fraction and self-renewal rate.

Stem cells and progenitor cells can produce oncogenic muta-

tions during DNA transcription, with the probabilities denoted as

MSC and MEP, respectively. The mutation of SC forms abnormal

stem cells (SCA). The formation of abnormal early progenitor cells

(EPA) can be caused by either the differentiation of SCA or muta-

tion in EP, or both. Through subsequent differentiation, EPA form

abnormal progeny (AP), which is the precursor of malignancy.

Each cell type is treated as a separate compartment with a parti-

cular rate of cell population growth. MC and AP can undertake

apoptosis.

When a chemotherapeutic drug is used, its effect on the cell

population size is reflected by its cell-kill rate m [30] (Fig. 1). Each

cell type is assumed to have its own carrying capacity Q [31]. Thus,

the dynamics of cell proliferation after drug therapy is expressed

as:

dN

dt
¼ vN 1 �N

Q

� �
� mAN (1)

where N denotes the cell population, v = (a/t)ln(2) is the cell

division rate, with a being the proliferative fraction and t being

the cell cycle time, and A is the average drug concentration in a

cellular matrix. The net rate of change of A is determined in Eq. (2)

by:

dA

dt
¼ aðtÞ � ðl � gNÞA (2)

where a(t) is a function of the drug infusion rate, l is the natural

drug decay caused by chemical decomposition of the drug or its

transport and gN is the rate at which the drug becomes ineffective

as a result of cell-kill rate [31]. Based on Eq. (1), Ganguly and Puri

[30] provided a group of differential equations that describe the

rate of change in a cell population.

Clinical design for systems mapping of chemotherapeutic
efficiency
Chemotherapeutic drugs have been used to treat and control

cancer, but there is tremendous interpersonal variability in drug

response, implicating a genetic component involved in che-

motherapeutic efficiency [32]. In a recent study of cancer gene

identification, Fugger et al. [33] used RNA interference to find a

gene, called FBH1, which is crucial for some chemotherapeutics to

kill cancer cells. Through a systematic search of such genes and a

feasible method to activate their expression, cancer treatment can

be improved. Integrated with differential equations for the

dynamics of cancer stem cells treated by a chemotherapeutic drug

[30], we reform systems mapping to allow genes controlling the

chemotherapeutic efficacy of cancer to be identified.

We design a clinical trial for n cancer patients each infused by a

chemotherapeutic drug with efficacies toward different cell popu-

lations. Cell-kill rates for different healthy and abnormal stem cell

compartments are assumed [34]. As depicted by Fig. 1, the healthy
stem cell compartment includes stem cells NSC, EP [consisting of k

subcompartments each with a population NEPl (l = 1, . . ., k)], total

efflux of differentiated EP Nout
EP that enter the LP compartment, LP

NLP and MC NMC. Nout
EP contains an efflux of EP that are mutated.

The abnormal stem cell compartment is composed of SCA NSCA,

EPA with k subcompartments NEPAl (l = 1, . . ., k), total efflux of EPA

Nout
EPA and AP NAP. Ganguly and Puri [30] constructed two groups of

ODEs for dynamic changes of the healthy and abnormal cell

compartments, respectively. These equations can be incorporated

by cell-kill rates by a chemotherapeutic drug (Fig. 1).

All n patients are infused by the same drug in a continuous or

periodic manner. The continuous infusion uses a constant drug

dose over the entire period of chemotherapy, whereas periodic

infusion is made every t hours in which instantaneous drug

concentration decays with time. Given the same total amount

of infused drug, period infusion is designed with two schedules:

short cycle (t = 100 h) and long cycle (t = 250 h). The overall

efficacy of drug is characterized by its effect on abnormal

progeny size. During chemotherapy under the continuous

and periodic infusion, different compartments of healthy cells

and abnormal cells are screened at different time points. For

these patients, genotypes at different single nucleotide poly-

morphisms (SNPs) throughout the genome are collected, pro-

viding a fuel of genome-wide association studies (GWAS) with

systems mapping.

For different genotypes at a particular SNP, systems mapping

is equipped to fit dynamic changes of cell populations in dif-

ferent compartments using a system of ODEs by Ganguly and

Puri [30]. Fu et al. [24] implemented the fourth-order Runge–

Kutta algorithm to estimate the ODE parameters numerically.

By comparing differences in these parameters between geno-

types, systems mapping can test how a gene affects cell

dynamics after chemotherapeutic treatment. Specifically, sys-

tems mapping can be used to address the following questions of

fundamental importance:

i. How does the gene affect each compartment of healthy cells

from stem cells to mature cells through early and late

progenitor cells (upper pathway of Fig. 1)? This is addressed

by testing whether a set of ODE parameters characterizing a

particular compartment differs among genotypes.

ii. How does the gene affect each compartment of abnormal

cells from cancer stem cells to tumor cells through abnormal

early progenitor cells (lower pathway of Fig. 1)? The testing

procedure for this question is similar to (i).

iii. How does the gene control the efflux of differentiated early

progenitor cells as well the amount of mutated early

progenitor cells?

iv. How does the gene control the efflux of abnormal early

progenitor cells?

v. How does the gene affect the mutation rates of stem cells and

early progenitor cells, respectively?

vi. How does the gene affect the cell-kill rates of stem cells and

early progenitors?

vii. How does the gene affect the cell-kill rates of cancer stem

cells and abnormal early progenitors?

viii. How does the gene affect the cell-kill rates of tumors? This

question is directly related to the genetic control of

chemotherapeutic efficacy.
www.drugdiscoverytoday.com 1127
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FIGURE 2

Genetic differences in the dynamic behavior of healthy stem cell and abnormal stem cell compartments as a complex system composed of seven biological

variables (SC, EP, LP, MC, SCA, EPA and AP) of cell proliferation characterized by Ganguly and Puri’s [30] ODEs. SC, normal stem cell; EP, early progenitor cells; LP, late

progenitor cell; MC, mature cell; SCA, abnormal stem cell; EPA, abnormal early progenitor cell; AP, abnormal progeny. Each curve is denoted as one of three
genotypes: AA (red), Aa (blue) and aa (green). Solid and dotted curves are true and estimated curves, respectively. The sample size and heritability used are

assumed to be 400 and 0.1, respectively, for this simulation.
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Questions (i), (iii) and (vi) are related to the genetic control of

drug toxicity, whereas questions (ii), (iv), (vii) and (viii) are con-

cerned with the genetic control of chemotherapeutic efficacy.

Question (v) tests the genetic control regarding how healthy cells

are mutated to be abnormal under a particular environmental

condition.

Numerical simulation
We performed simulation studies to test how systems mapping

functions to detect genes for chemotherapeutic efficacy in terms

of the cancer stem cell hypothesis. Our simulation was designed

according to three different scenarios of drug infusion: contin-

uous, short periodic cycle (100 h) and long periodic cycle

(250 h). In each scenario, different sample sizes (400 and 800)

and different heritability levels (0.1 and 0.2) are assumed. In the

simulated population, we assume that there is a segregating QTL

with three genotypes AA, Aa and aa in frequencies of 0.35, 0.45

and 0.20. These three genotypes each bear different sets of

mathematical parameters that define Ganguly and Puri’s [30]

ODEs for healthy and abnormal cell dynamics. The patients are

treated with a chemotherapeutic drug under three different

infusion scenarios. Phenotypic compartment cell data were

simulated for seven components by assuming a heritability

value for each component at a middle point. The time-depen-

dent residual covariance matrix for each component variable is

structured by a first-order autoregressive model. To facilitate

computing, no residual correlations are assumed to exist among

component variables, although the interdependence of differ-

ent variables is reflected by ODE.

The model was used to analyze the simulated data. The model

can precisely estimate allele frequencies and linkage disequili-

brium between the marker and QTL (results not given), suggesting

that an underlying QTL can be identified by a marker when a

modest sample size (400–800) is used. For given sample sizes and

heritabilities, the model can precisely estimate ODE parameters

that specify the dynamic system of healthy and abnormal

cells (Fig. 1) under three simulation scenarios (results not given).

Figure 2 illustrates an example in which the estimated curves of

different compartments (comprising healthy and abnormal cell

populations) after the treatment of continuous and periodic infu-

sion are compared with the respective true curves, assuming the

sample size of 400 and heritability of 0.1. In general, the estimated

and true curves are consistent, suggesting that systems mapping

can serve as a powerful approach for identifying specific genes

involved in cancer initiation and further estimating the temporal

pattern of their control over cancer formation. There is not much

difference in the accuracy of curve estimation under three scenar-

ios of infusion, given a modest sample size and modest heritability.

By looking at results from different sample sizes and heritability

levels, the overall conclusion is that increasing sample and herit-

ability sizes can increase the precision of parameter estimation, but

estimation precision can be improved better by increasing trait

heritability through reducing phenotyping errors rather than by a

simple increase of sample size. Simulation studies have also been

performed to study the power of gene identification by systems

mapping. It appears that the model indicates good power (>0.90)

even when there is a modest sample size (400) and heritability

(0.10). The model has an acceptable false-positive rate (<0.05).
Concluding remarks
Increasing evidence indicates that cancer arises from cancer stem

cells mutated from normal stem cells [1–5]. Genes are thought to

play an important part in initiating cancer stem cells and guiding

their division and proliferation [35]. Given their dynamic proper-

ties, Wang et al. [16] integrated mathematical aspects of cancer

stem cells [12] into systems mapping, a model designed to map

dynamic genes [19,24,25], to identify the genetic control of cancer

formation and progression. Because of our growing recognition of

cancer stem cells, Wang et al.’s model could help to redesign

current cancer-killing therapies by first identifying this type of

cell from normal stem cells, followed by the eradication of the

former through developing specified chemotherapies.

In this article, we put forward a theoretical framework by which

to characterize specific QTLs involved in a pathway toward che-

motherapeutic efficacy. This framework takes advantage of sys-

tems mapping by viewing the process of cancer stem cell

formation and division as a dynamic system. Within the system,

the pathways of cell compartments and their interactions are

quantified by a system of differential equations [30]. The genetic

control of cancer cell formation can be understood in terms of the

molecular mechanisms of neoplastic processes. The model allows

the test of numerous biologically and clinically meaningful

hypotheses about pleiotropic control of QTLs for different steps

of cancer susceptibility. The statistical properties of the model

were investigated through computer simulation, validating the

model’s statistical usefulness and utility.

To be more clinically relevant, the framework described should

be filled by the latest discoveries of genetic control for cancer stem

cell growth and response to drug interventions. The model should

be innovated to characterize a network of genes that interact in a

coordinated manner [36] to determine cancer stem cells and their

responsiveness to chemotherapeutic drugs. Genetic imprinting, a

phenomenon where the expression of a gene relies on the paternal

or maternal origin of an allele [37–39], is caused by epigenetic

marks, and has been thought to be important for cancer suscept-

ibility [40–42]. The molecular mechanisms for genetic imprinting

arise from epigenetic marks by switching the genetic information

on and off [40,43]. A new design based on family structure [44] can

be adopted to take into account the functional role of genetic

imprinting and epigenetic marks in initiating cancer stem cells.

Pharmacogenes, genes that regulate drug response, act usually

in a way of interacting with metabolic and environmental signals.

It is essential that the model is integrated with metabolic and

environmental factors; equipped to characterize key pathways of

interactions between pharmacogenes and these factors toward the

outcome of drug reactions. While inhibiting the formation and

growth of cancer cells, some drugs, such as temozolomide, can

induce genetic mutations of host cells [45]. How these mutations

affect the efficacy and toxicity of chemotherapeutic drugs should

be quantified and incorporated into the model framework.

Currently, GWAS have been used as a routine tool to scan

functional or causal polymorphisms from 300 000 to 1 000 000

SNPs [46]. Other genetic variants, such as copy number variation

(CNV), have also been increasingly recognized as important con-

tributors to drug response. A powerful protocol allows genome-

wide CNV identification from single nuclei isolated from a mixed

population of cells [47], providing a new avenue for detecting
www.drugdiscoverytoday.com 1129
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pharmacogenes. Recent developments in statistical variable selec-

tion modeling have enabled a comprehensive analysis of all the

markers and CNV that cover the entire genome [48], facilitating

the search of all possible QTLs. Thus, the integration of our

systems mapping and GWAS through variable selection can

potentially promote our ability to elucidate the picture of the
1130 www.drugdiscoverytoday.com
genetic architecture of chemotherapeutic efficacies for cancer

stem cells.
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