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Quantitative structure–activity relationship (QSAR) methods and related approaches have been used to

investigate the molecular features that influence the absorption, distribution, metabolism, excretion

and toxicity (ADMET) of drugs. As the three-dimensional structures of several major ADMET proteins

become available, structure-based (docking-scoring) computations can be carried out to complement or

to go beyond QSAR studies. Applying docking-scoring methods to ADMET proteins is a challenging

process because they usually have a large and flexible binding cavity; however, promising results relating

to metabolizing enzymes have been reported. After reviewing current trends in the field we applied

structure-based methods in the context of receptor flexibility in a case study involving the phase II

metabolizing sulfotransferases. Overall, the explored concepts and results suggested that structure-based

ADMET profiling will probably join the mainstream during the coming years.
Introduction
The success of a drug is determined not only by good efficacy but

also by an acceptable ADMET profile. Although a large variety of

medium- and high-throughput in vitro ADMET screens are avail-

able, being able to predict some of these properties in silico is

valuable. Today, it is recognized that employing computational

ADMET, in combination with in vivo and in vitro predictions as

early as possible in the drug discovery process, helps to reduce the

number of safety issues [1]. Moreover, there is a pressure to reduce

the number of animal experiments (e.g. the REACH project).

Traditionally, data modeling methods, such as expert systems

and quantitative structure–activity (property) relationships

(QSARs/QSPRs) [2,3], have been used to investigate ADMET prop-

erties. These methods use statistical and learning approaches,

molecular descriptors and experimental data to model complex

biological processes (e.g. oral bioavailability, intestinal absorption,

permeability and mutagenicity [2,4]). The rules for drug-likeness

or lead-likeness or metabolite-likeness [5,6] relying on simple

physicochemical properties are also well-known and implemented
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in commercially and freely available packages [4,7,8]. However,

limitations of all these approaches come from the fact that high

quality experimental data are seldom available [9], and that the

approaches tend to neglect direct structural information about the

ADMET proteins. In silico approaches based on the 3D structures of

these proteins could therefore be an attractive alternative or could

complement ADMET data-modeling techniques [10].

The first attempt to predict ADMET taking into account the

protein structures at the atomic level started about ten years ago

with the early homology models of human cytochrome P450

(CYP) [11,12]. Several new studies have recently been reported

that exploit the 3D structures of ADMET proteins, molecular

docking and different strategies for taking into account protein

flexibility during the process. They all highlight that these proteins

are difficult to investigate – in part because of the presence of large

and flexible ligand-binding cavities that can interact with diverse

ligands. Most of these investigations focus on phase I metabolizing

enzymes such as CYP (for recent key reviews, see Refs [10,13,14]).

To date, predictions of interactions between drug candidates and

phase II metabolizing enzymes based on 3D protein structures are

still essentially missing.
ee front matter � 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2011.10.023
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Here, we synthesize recently reported in silico studies aiming at

predicting small molecules binding to ADMET-related proteins

based on the knowledge of the 3D structures of these macromo-

lecules with a special emphasis on metabolizing enzymes. Numer-

ous advantages of direct 3D approaches compared with QSAR or

expert systems have been mentioned such as limitations of the

applicability domain owing to the small number of compounds

used to develop the models [15]. Also, these models cannot usually

explain the molecular mechanisms taking place because a full

understanding requires analysis of the reactions at the atomic

level in the context of a flexible ligand and protein 3D structure.

Further, only a few reviews on ADMET predictions using the 3D

structure of relevant proteins have been reported to date, although

the field is gaining momentum, in particular for phase II meta-

bolizing enzymes that have been overlooked despite their impor-

tance. Clearly, additional efforts are needed to advance the

exploitation of the growing amount of 3D structural information;

this will also require receptor flexibility to be taken into account

more efficiently, and to tailor the scoring functions for these

promiscuous ADMET-related proteins. Recent developments in
TABLE 1

Drugs known to interact with ADMET proteins

ADMET proteins Drugs

CYP R–H + O2 + NADPH + H+! R–OH + NADP+ + H2O

3A4 Antiallergic (terfenadinea), antibiotic (cyclosporinb, troleand
ritonavira, fluvoxamineb), antifungal (itraconazolea, miconaz

2D6 Basic substrates (bufuralola, metoprolola); atypical substrate

(spirosulfonamide, steroids)
Antiarrhythmics (aprindinea, flecainidineb, propafenonea), b

azelastinec), analgesics (quinineb), antidepressants (fluoxetin

2C9 Compounds containing dipole or negative charge, lipophil

warfarina, diclofenaca

2B6 Anticancer (cyclophosphamidea, ifostamidec), analgesic (pro

SULT R–OH + PAPS ! R–O–SO3H + PAP

SULT1A1: uncharged phenolic compounds, hydrophobic, sm

SULT1B: thyroid hormones; SULT1C: arylhydoxylamine; SULT
Analgesic (diflunisalb), anti-inflammatory non-steroidal (ibu

antineoplastic (tangeretinb), antibiotic (triclosana), antifunga

anticonvulsant (chrysinc), antiasthmatic (epicatechina)

UGT R–OH + UDP-glucuronic acid ! R–O–glucuronic acid + UDP

Aromatic or aliphatic hydroxyls, carboxylic acid and amines
morphinea), anti-inflammatory non-steroidal (ibuprofena, flu

diphenhydraminea, loratadineb), anxiolytic (diazepamb, med

PXR Large and hydrophobic: antibiotic (dicloxacillin, rifapentine

anti-HIV (ritonavir), anti-inflammatory non-steroidal (celeco
(betamethasone, pregnenolone, dexamethasone, hydrocort

CAR Large and hydrophobic: antifungal (clotrimazole, ketoconaz

antineoplastic (PK11195), androstenol, coumestrol

HSA Anti-inflammatory non-steroidal (ibuprofen, diflunisal, azap

(propofol)

AGP Apolar, basic or lipophilic compounds: alpha blocker (nicer

(aprindine, disopyramide), antibiotic (erythromycin), anticoa

Herg Astemizole, cisapride, haloperidol, sertindole, thioridazine, t

P-gp Antidepressant (desvenlafaxine, nefazodone, fluoxetine, ph

erythromycin), antipsychotic (tetrabenazine, trifluopromazin
antineoplastic (vinblastine, tamoxifen)

Information sourced from Aureus Sciences database http://www.aureus-pharma.com/. The cata

action is noted as follows: Substrate and Inhibitora; Inhibitorb; Substratec.
in silico structure-based methods enable the tackling of some of

these issues as discussed in this review. Along this line, we apply

structure-based methods combined with receptor flexibility simu-

lations [16–18] to study sulfotransferases (SULTs). Indeed, sulfona-

tion can be crucial for ADMET processes because it can increase the

elimination of drugs or, in some cases, induce toxic effects through

the formation of highly reactive intermediates [19] or provoke

genotoxicity [20].

Metabolizing enzymes
CYPs
CYP enzymes are the major, and most studied, phase I drug-

metabolizing enzymes mediating oxidation of a variety of com-

pounds involved in various physiological and pathophysiological

processes, including detoxification of xenobiotic compounds and

sometimes bioactivation of nontoxic to toxic reactive intermedi-

ates and procarcinogens (Table 1). CYPs are also implicated in

drug–drug interactions (DDIs) mediated by drug inhibition or

induction [21,22]. It has been estimated that �75% of the mar-

keted drugs are metabolized by CYPs, with five major CYP isoforms
omycina, clarithromycina, erythromycina), anti-VIH (indinavira, amprenavira,
oleb), anticancer (tamoxifena), CNS (desipraminec)

s: acidic (pactimibec) or neutral (i.e. not containing a basic nitrogen)

eta-blockers (bufuralola, propranololc), antiallergic (terfenadinea,

ea)

ic groups: piroxicama, ibuprofena, chlorpropamidea, nateglinidea, phenytoina,

pofola), antiretroviral (efavirenza), andidepressant (bupropiona)

all flat aromatic; SULT1A3: positively charged, simple aromatic phenol;

1E1: steroids, estrogen; SULT2A1: hydoxysteroids, DHEA; SULT2B: cholesterol
profenb), antihypertensive (minoxidilc), antiulcerative (naringenina),

l (salicylic acidb), antioxidant (naringinb), antidiabetic (troglitazonec),

: anticancer (epirubicinc), opioid-based pain medicines (codeinea, cocaineb,
rbiprofena, indomethacina), antihistaminic (cetirizineb, astemizoleb,

azepamb, flunitrazepamb), antibiotic (triclosana, sulfamethoxazoleb)

, mevastatin), antidiabetic (mevastatin, troglitazone, pioglitazone),

xib, flurbiprofen, phenylbutazone), anti-inflammatory steroidal
isone), anticoagulant (warfarin)

ole), antipsychotic (thioridazine), myorelaxant (temazepam),

ropazone), anticoagulant (warfarin), anxiolytic (diazepam), analgesic

goline, prazosin), analgesic (methadone, fentanil), antiarrhythmic

gulant (warfarin), beta-blocker

erfenadine

enelzine), antiviral (atazanavir, ritonavir), antibiotic (retapamulin, romidepsin,

e, haloperidol), antidiabetic (dapagliflozin, sitagliptin, repaglinide),

lyzed reactions for CYP, SULT and UGT are schematically shown for the enzymes and ligand
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FIGURE 1

Available 3D structures from the PDB for (a) CYPs and (b) SULTs.
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involved in 75–90% of CYP-related metabolism [23] (Fig. 1a).

Interestingly, a variability of the drug metabolization rate is

observed in several CYPs, among them CYP2D6 and CYP2C9,

owing to their high polymorphism.

Today, numerous structures of human CYPs are available in the

Protein Data Bank (PDB) (Fig. 1a), and they all share a similar fold

(Fig. 2). The active site is generally large and flexible and some-

times more than one ligand can bind simultaneously. Yet, impor-

tant differences are observed when conducting in-depth analyses

of the active sites of the different CYP enzymes.
46 www.drugdiscoverytoday.com
CYP3A4 metabolizes �50% of all drugs [24] and displays a large

and flexible active site. Many studies reported during the past

decade outlined the importance of accounting for the flexibility of

proteins involved in the ADMET processes [10,25–27]. Modeling

the binding of small molecules to ADMET-related proteins without

considering flexibility can lead to many artifacts, in particular

those due to relatively large conformational changes potentially

induced by different ligands, as seen for example from the X-ray

structures of CYP3A4 bound to ritonavir or metyrapone. On the

basis of the CYP3A4 experimental structure, several possible
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Several ADMET-related protein folds
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FIGURE 2

Several ADMET-related protein folds and bound ligands. The ligand-binding sites are highlighted as a grey surface and pink circle: human CYP (PDB ID: 2HI4);

human SULT (PDB ID: 1G3M); UDP-glucuronic acid binding domain (BD) of human UGT (PDB ID: 2O6L); human HSA (PDB ID: 1GNI); human AGP (PDB ID: 3APV);

hERG – a schematic representation of S5, S6 and P helices (KcsA; PDB ID: 1K4C); murine P-gp (PDB ID: 3G60); ligand BD of human PXR (PDB ID: 1NRL); ligand BD of

human CAR (PDB ID: 1XV9).

R
ev
ie
w
s
�
IN
F
O
R
M
A
T
IC
S

binding modes were investigated by Vedani and Smiesko [10]. The

authors combined flexible docking and multidimensional QSAR to

evaluate the inhibitory potential of 48 compounds. This approach

was validated on experimental holo structures and experimental

metabolism data for CYP3A4. A promising strategy was recently

designed to predict regioselectivity of some ligands of CYP3A4

through a combination of docking, molecular dynamics (MD)

simulations and quantum-chemistry-based calculations of the

activation energy [14].

CYP2D6 is the second-most studied drug-metabolizing enzyme.

CYP2D6 shows the largest phenotypic variability among the CYPs,

largely owing to genetic polymorphism. Although the crystal

structure of CYP2D6 was released in 2006 [28], structure-based

methods initially made use of homology models to investigate

CYP2D6 interaction with its ligands. For instance, Kemp et al.

applied homology modeling, docking with GOLD (see Supple-

mentary material Table I) and scoring with ChemScore, and they

successfully identified several compounds from the National Can-

cer Institute database as being CYP2D6 inhibitors [29]. Yet, no

sufficient correlation between the ChemScore values and the

experimental log IC50 has been obtained (r2 = 0.61). Later, MD

simulations and simulated annealing protocols were performed
to generate 20 different conformations of CYP2D6 [30]. On the

basis of the docking scores, the authors used a neural network

model to identify different CYP2D6 conformations relevant for

the binding affinity prediction. Another study demonstrated that

the accuracy of the docking and virtual screening on a homology

model of CYP2D6 can be improved by adding water molecules to

the active site [31]. In this direction, MD simulations [32] sug-

gested there were 12 hydration sites in the active site of CYP2D6

that could be exploited during docking and virtual screening

experiments. In a recent study, the flexibility of the CYP2D6 active

site was analyzed with the aim of carrying out virtual screening

computations [33]. Sixty-five substrates were docked into 2500

structures extracted from MD simulations and a binary decision

tree was used to find the three most essential structures enabling

the accurate prediction of the metabolism site for most of the

ligands. At the end, 80% of the sites of metabolism were correctly

predicted by this approach. Recently, homology modeling and a

docking study with Glide highlighted the importance of taking

into account induced-fit adaptations upon ligand binding [34].

Indeed, the authors obtained an 85% success rate for identifying

the site of metabolism when they docked CYP2D6 substrates into a

homology model based on the holo CYP2C5 crystal structure,
www.drugdiscoverytoday.com 47
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whereas a lower success rate was obtained on the apo crystal

structure of CYP2D6.

Several in silico studies attempted to predict drug interactions

with CYP2C9 based on the three human crystal structures avail-

able at the PDB – one being ligand-free (apo) and the two others

complexed with either warfarin or flurbiprofen. A recent investi-

gation into the interaction mechanism between CYP2C9 and

proton pump inhibitors (PPIs) [35] highlighted the importance

of a hydrogen-bond network involving PPIs, water molecules and

some binding site residues. The importance of including explicit

water molecules in docking exercises is often discussed in the

literature because they can mediate the substrate–enzyme reac-

tion. In fact, the positions of the water molecules can be crucial,

because it has been observed when predicting metabolic sites of

CYP-mediated metabolic reactions [25]. To improve the prediction

of ligand affinity toward CYP2C9, Stjernschantz and Oostenbrink

developed a protocol combining docking, MD simulations and

free energy calculations with the linear interaction energy (LIE)

approach [36]. Rossato et al. combined MD simulations, docking

experiments and a QSAR modeling scheme that included a term

corresponding to the predicted binding energies of compounds

against CYP2D6 and CYP2C9 [26].

Several in silico studies predicting ligand binding at the atomic

level for other CYP isoforms have also been reported [37]. Taking

into account that CYP metabolism involves binding and substrate

chemical modification driven by atom reactivity toward the oxy-

gen–heme complex, a combination of binding prediction based on

the similarity between molecular interaction fields of the active

site and substrates with substrate reactivity [38] is a valuable

approach. This enabled MetaSite [38] to give high success rates

in terms of the prediction of CYP-specific metabolites.

Together, these studies demonstrate several crucial issues that

need to be solved to predict potent CYP binders accurately, such as

the role of water molecules and how to incorporate protein flex-

ibility more efficiently during the docking process.

UDP-glucuronosyltransferases
UDP-glucuronosyltransferases (UGTs) are phase II drug-metaboliz-

ing enzymes responsible for glucuronidation leading to covalent

addition of the glucuronic moiety from UDP-glucuronic acid

(UDPGA) to endogenous compounds and drugs. This is a major

pathway for detoxification of numerous carcinogens such as poly-

cyclic aromatic hydrocarbons (PAHs) and aryl- and hetero-cyclic

amines [39]. UGT-catalyzed glucuronidation is thought to account

for up to 35% of the phase II reactions. Three main isoforms:

UGT2B7, UGT1A4 and UGT1A1, are responsible for drug modifi-

cation of 35%, 20% and 15% of the drugs metabolized by UGTs,

respectively [40]. Computational modeling of human xenobiotic

glucuronidation has only started in the past decade using classica-

tion, 2D-(3D)-QSAR or regression methods [41,42].

The experimentally known crystal structure of human UGT

(isoform 2B7) contains only the C-terminal UDPGA-binding

domain [43] but the catalytic ligand-binding domain is not

resolved yet (Fig. 2). Homology modeling of UGT2B7 based on

the related plant flavonoid glucosyltransferases [44] suggests that

the human UGTs share a common catalytic mechanism and this

introduces the possibility of studying potential interactions with

drug candidates at the atomic level [45].
48 www.drugdiscoverytoday.com
Nuclear receptors
Nuclear receptors (NRs) are ligand-regulated transcription factors

that control the expression of numerous genes and are generally

composed of a DNA-binding domain and a ligand-binding

domain. Triggering the upregulation of metabolizing-enzyme

transcription, some NRs (i.e. pregnane X receptor, constitutive

androstane receptor) can indirectly induce undesirable DDIs.

Other NRs, such as androgen receptor, estrogen receptor, gluco-

corticoid receptor, thyroid receptor, bind endocrine disruptors

which interfere with the function of the endocrine system and

might affect reproductive, developmental, immunological and

neurobiological functions. The ligand-binding and induced-fit

effects have been modeled based on the 3D structures of several

NRs [10,27,46].

Pregnane X receptor
Pregnane X receptor (PXR) is implicated in the regulation of the

CYP3A, UGT and ABC transporter genes [47]. PXR is activated by a

wide range of compounds, such as pregnane compounds, anti-

fungals and glucocorticoids. Two structures of the human apo PXR

and seven structures of the human ligand-bound PXRs are now

known and have been found to be similar, but only the ligand-

binding domain is solved.

Recently, docking of small organic molecules was used to inves-

tigate the structural basis for PXR xenobiotic recognition [48]. Five

hotspots with a major contribution in the binding free energy

between PXR and ligands have been identified at the surface of the

ligand-binding domain. Ekins and co-workers combined docking,

hybrid scoring strategies and 3D-QSAR modeling on several PXR

structures to improve the prediction of PXR agonists among the

ToxCastTM database and a steroid database [49]. In a recent study,

Chinese herbal molecules were docked into the ligand-binding

cavity of PXR. The results suggest that some molecules can interact

with PXR and therefore act on CYP3A4 [50]. The large number of

potential arrangements within the binding site seem to explain

why PXR can accommodate a large variety of compounds, whereas

structural analysis and molecular modeling suggest a unique signal

transduction mechanism between the PXR homodimerization

interface and its coactivator binding site [48].

Constitutive androstane receptor
Constitutive androstane receptor (CAR) reveals in vitro activity

even in the nonliganded state. In vivo CAR is quiescent in the

cytoplasm and, upon treatment with an inducer, it can translocate

to the nucleus where it activates the transcription of genes includ-

ing some CYP members, UGT, SULTs and ABC transporters, thus

influencing drug response [51].

Two structures of the human CAR ligand-binding domain have

been solved in complex with CITCO (see Supplementary material

Figure I) or 5b-pregnanedione [52]. The general fold is similar to

the PXR fold (Fig. 2). On the basis of homology models, complexed

with ligands or in the uncomplexed state, the flexibility of the CAR

binding site has been investigated by MD simulations combined

with molecular docking [53]. Küblbeck and co-workers performed

virtual screening of the LeadQuest1 database on a human CAR

structure [54]. Among the 66 compounds tested in vitro, 19 sub-

stituted sulfonamides and thiazolidin-4-one derivatives were iden-

tified as CAR agonists. Recently, the models of two human CAR
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splicing variants were built using human CAR structures [55].

Alternative splicing of the CAR gene seems to increase the diversity

of compounds that can activate CAR. Although the ligand-binding

domains are similar overall, the presence of specific residues results

in small changes in the binding site leading to different affinities

for the CAR isoforms and possible different binding modes [55].

Estrogen receptors
Estrogen receptors (ERs) exert a set of effects on the differentiation,

growth and maintenance of many tissues. Two distinct ERs, ERa

and ERb, compete to bind 17b-estradiol, which plays an important

part in mediating sexual development. Vedani and co-workers

built a model to predict molecules that can trigger toxic effects

through their binding to ERs [56]. They docked 106 compounds

into the ER binding pocket and showed that retaining up to four of

the best binding modes is helpful for a successful creation of a 6D-

QSAR model.

Androgen receptor
Androgen receptor (AR) is known to be involved in the growth of

the prostate gland as well as the development of prostate cancer.

Identification of potential drugs that can disrupt hormonal sys-

tems via binding into AR is important for their ADMET evaluation.

To develop a system for the prediction of ligand binding to AR, 119

AR ligands were analyzed by flexible docking, MD, LIE and multi-

dimensional QSAR methods [57]. Indeed, the built model could

predict the binding energy of AR ligands correctly. Further, mar-

keted oral drugs were docked into multiple structures of AR using

the software ICM [58] and three antipsychotic drugs, acetophe-

nazine, fluphenazine and periciazine, have been identified as

being weak nonsteroidal AR antagonists, correlating well with

endocrine side effects observed in individuals taking these med-

ications.

Finally, a recent modeling study on 13 NRs [27], such as AR, ER,

glucocorticoid receptor and mineralcorticoid receptor, has been

reported. To consider the protein plasticity, multiple NR confor-

mations collected from crystallographic structures were taken and

157 diverse NR ligands were docked into the multiple ensembles.

Although the near-native ligand-binding geometry was repro-

duced in 89% of the cases of employed ensemble docking, 78%

cases were correctly reproduced when a single receptor was used,

underlining the gain in accuracy when taking into account the

receptor flexibility.

Plasma-binding proteins
Several blood plasma proteins, such as human serum albumin

(HSA), a1-acid glycoprotein (AGP), lipoproteins and a-, b-, g-

globulins, bind a wide variety of drugs and endogenous com-

pounds. HSA and AGP are known to bind �300 drugs. Because

only the free drug concentration determines the pharmaceutical

activity, possible interaction of compounds with plasma protein

binding capability has to be considered during the drug discovery

process.

Human serum albumin
HSA represents 60% of total human plasma protein, with a con-

centration �0.6 mM [59]. It has a crucial role in the transport of

relatively insoluble endogenous compounds such as fatty acids,
hormones and vitamins. More than 70 experimental structures of

HSA, free or bound with endogenous compounds or drugs, are

available in the PDB. HSA is an a-helix single-chain protein formed

by three homologous domains (I–III) arranged in a heart-shaped

fashion [60] (Fig. 2). Seven fatty-acid-binding sites are distributed

throughout the protein, whereas most drugs bind to one of the two

primary binding sites located in domains IIA and IIIA [60], and

allosteric mechanisms can also be involved [61]. Ligands that can

bind to the highly flexible site I (the so-called warfarin site) are

usually negatively charged large heterocyclic and/or dicarboxylic

acid compounds (warfarin, azapropazone and dansylamide) [62].

The smaller site II (the diazepam site) often binds aromatic car-

boxylic acids (i.e. diazepam, ibuprofen and arylpropionic acids).

Other molecules, endogenous (bilirubin, etc.) and some drugs

(propofol, oxyphenbutazone, among others) bind within the five

other sites identified in the three domains. Interestingly, several

compounds can bind to at least two sites, such as azapropazone,

indomethacin and fatty acids.

The knowledge of the 3D HSA structure was successfully used to

optimize potential therapeutic molecules for preventing their

binding to HSA, like methionine aminopeptidase-2 inhibitors

[63] and Bcl-2 inhibitors [64]. Molecular docking studies have

been used to examine the interaction of creatinine with HSA

and attempt to shed new light onto the mechanism of uremic

toxin disposition in renal disease state [65]. Other in silico

approaches [i.e. molecular docking, MD simulations and molecu-

lar mechanics/generalized born surface area (MM/GBSA) analysis]

have been employed to predict the binding modes of flavonic

compounds to HSA [66]. In a recent study, the authors exploited

the LIE method in addition to the aforementioned ones to eval-

uate the binding free energy of complexes formed by HSA and two

perfluorooctanoic acid compounds [67]. Despite the numerous

crystal structures of HSA it is still challenging to predict ligand

binding because of the different binding sites present on the

protein and the possible subtle or more-significant conformational

changes [68]. An online service using support vector machines and

automated docking with the Autodock Vina program has recently

been reported and might help to predict ligand binding to HSA

[69].

a-1-Acid glycoprotein
The biological function of the acute phase AGP is not completely

understood yet [70]. AGP has a lipocalin fold and is able to bind

and transport several hundreds of endogenous or exogenous

molecules, predominantly apolar, basic or lipophilic compounds.

Interestingly, in human AGP there is a mixture of two or three

genetic variants. Although many drugs have similar binding con-

stants, others (e.g. promethazine, warfarin and dipyridamole)

demonstrate considerable differences between the AGP variants

[71].

Whereas AGP has been extensively studied since the 1980s, a

first structural model was only built in 2003 [72]. The authors used

a combination of vibrational spectroscopies, homology modeling

based on the crystal structure of the bilin-binding protein and

molecular docking to propose a model of the AGP-progesterone

interaction. Interestingly, although AGP is one of the most gly-

cosylated proteins in the human body, the oligosaccharide moi-

eties do not appear to play a part in ligand binding [62]. The first
www.drugdiscoverytoday.com 49
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high-resolution structure of the F1*S variant of AGP was solved in

2008 [73] with a (2R)-2,3-dihydroxypropyl acetate compound

bound in the upper portion of the binding site. To gain insights

into the AGP binding mode, the authors performed molecular

docking with diazepam and progesterone. Recently, high-resolu-

tion structures of the A variant of AGP alone and bound with

amitriptyline, chlorpromazine and disopyramide have been

released [70]. The structural comparison of AGP has shown that

the drug-binding pocket of the A variant is narrower than that of

the F1*S variant. Hence, for some drugs the selectivity of AGP

variants has been explained by differences in the nature and shape

of the binding pockets.

The human ether-a-go-go-related gene potassium
channel
QT prolongation is related to ventricular repolarization that is

under the control of Na+ and Ca2+ and K+. The rapid and slow

delayed rectifier currents, IKr and IKs, are produced by the hERG

(human ether-a-go-go-related gene) and the KCNQ1 K+ channels.

The QT prolongation regulatory document [74] recommends to

study hERG with in vitro binding, electrophysiology or in vivo

studies in the guinea pig, recording ECG. Several drugs are known

to prolong the QT/QTc interval without blocking the hERG chan-

nel, and vice versa. Thus, there are other unknown mechanisms or

multiple ion (Na+ and Ca2+ and K+) channels involved in QT

prolongation [75]. A more global assay using Rb flux, which

reflects the resulting effect on both ion channels, has been pro-

posed in QT studies [76].

Still, at present, hERG blockers are the most explored ones with

in silico approaches. A wide variety of compounds prolong the QT

interval through actions on the hERG channel. Among them,

several drugs, such as astemizole, cisapride, grepafloxacin, halo-

peridol, pimozide, sertindole, thioridazine and terfenadine, have

been restricted or withdrawn from the market [77].

hERG is a tetramer, with each subunit containing six transmem-

brane helices. The helices S1–S4 form the voltage-sensor domain,

and S5–S6 form the pore domain. The drug-binding site is within

the cavity formed by four S6 helices of the hERG tetramer (Fig. 2).

To date, only an extracellular loop and the cytoplasmic N-terminal

domain involved in the regulation of the channel opening are

experimentally known. Different homology models of the pore

domain have been proposed based on known structures of other

eukaryotic voltage-sensitive channels or bacterial potassium chan-

nels [78–80].

Several homology models have been exploited to elucidate drug

blocking of the hERG channel [81]. Based on docking computa-

tions, several studies suggested that Y652 and F656 located in S6

are implicated in the hERG binding mechanism forming p stack-

ing interactions with the ligands [78,82]. The residues T623, S624

and V625 localized near the pore helix have also been shown to be

important for drug interactions [61,62]. The residues T623 and

S624 interact with the polar tails present in several hERG ligands.

MD simulations were also carried out to optimize the best docking

solutions and to evaluate relative binding affinities by the LIE

approach [80]. Insights of the drug blocking of hERG were further

investigated using docking on refined homology models [83]. A set

of 20 hERG blockers has been docked and a good agreement with

the experimental data was obtained. Additional accuracy was
50 www.drugdiscoverytoday.com
achieved by rotating the helix S6 in a different model, underlining

that the model quality is crucial to obtain relevant binding mode

predictions. Recently, the relative importance of key residues for

ligand binding was quantified (F656 > Y652 > T623 > S649) and a

model to predict drug blockage of hERG was derived by combining

3D-QSAR and docking computations [84].

In the future it would be of interest to set up in silico models for

other ion channels or, when available, on Rb flux data. The

combination of these in silico models should result in more-com-

plete prediction of QT prolongation. In this direction, a systems

chemical biology approach has been proposed for the prediction of

new possible targets related to cardiac arrhythmias [85]. In addi-

tion, a recent in silico study going beyond the most explored hERG

has been performed on two K+ channels, hERG (IKr) and KCNQ1

(IKs), by combining docking simulations with 3D-QSAR modeling

[86]. Introducing the obtained results in electrophysiological mod-

els suggested the importance of multiscale prediction systems for

preliminary screening in lead discovery.

ABC transporters
P-glycoprotein
The ATP-binding cassette (ABC) transporters form a large super-

family of proteins that transport several molecules across the

membrane bilayers. To date, 48 members of the ABC superfamily

have been found in humans [87]. ABC transporters are within the

main focus of research interest [88], because of their involvement

in multidrug resistance (MDR) and reducing the exposure of drugs

through the drug transport. P-glycoprotein (P-gp), also called

multidrug resistance protein 1 (MDR1), is the first ABC transporter

discovered and it is the most explored transport protein. It acts as

an active transporter expelling molecules out of the cell in an

energy-dependent manner. P-gp has broad substrate specificity

and it can recognize diverse compounds: charged or neutral, linear

or circular, aromatic or non-aromatic.

The eukaryotic ABC transporters are generally composed of two

membrane domains and two nucleotide-binding domains (NBDs).

Experimental data suggest that they undergo large conformational

changes during the transport cycle. According to the most popular

ATP switch model, proposed by Higgins and Linton [89], the

transporter substrate binds to its high-affinity binding site on

the membrane domains from the inner leaflet of the membrane.

It seems that P-gp is able to bind simultaneously to more than one

ligand in up to seven binding sites [90]. The human P-gp structure

has not been solved yet. Thus, during the past decade, numerous

homology models of different parts of human P-gp were built

based on the structure of the bacterial MsbA lipid transporter [91]

or based on the Sav1866 crystal structure, an ABC protein from

Staphylococcus aureus [92]. Recently, docking on human P-gp mod-

els in several different states (i.e. nucleotide-bound, closed and

open nucleotide-free models) was used to explore structure–func-

tion relationships of the putative ligand-binding sites [93]. Two

potential pathways formed by a chain of interacting residues and

involved in the propagation of a signal upon ATP binding

throughout the membrane domains were proposed. Recently,

the X-ray structure of murine P-gp, sharing 87% sequence identity

to human P-gp, has been reported in bound and unbound states

[94] (Fig. 2) and several new human P-gp models were developed.

On the basis of such models, Pajeva and co-workers used docking
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to propose a binding mode for quinazolinones and other ligands

[95]. The results also confirmed the possibility of multiple binding

sites for the binders. Recently, five propafenone derivatives were

docked with GOLD (and rescored via the empirical scoring func-

tion XSCORE into P-gp homology models built from the murine

structures [96]. The binding poses in closed and open structures

seem to be in good agreement with the available experimental

data.

The high conformational flexibility of the ABC transporters, the

large binding cavities composed of multiple binding sites, the

ability to accommodate more than one ligand simultaneously,

the change in the level of affinity of the binding sites during the

transport cycle – all these factors render the modeling task extre-

mely difficult at present [87]. Furthermore, often DDIs related to

ABC transporters are due to substrate overlap with drugs targetting

other proteins [21]. Several studies focused on searches of selective

inhibitors for P-gp and CYP3A4 [97,98], very important for cir-

cumventing MDR effects efficiently [97].

Case study: toward prediction of drug modifications by
SULTs
SULTs are a supergene family of enzymes catalyzing the transfer of

a sulfonate group from 30-phosphoadenosine 50-phosphosulfate

(PAPS) to a hydroxyl or amino group of the substrate. Sulfonation

is a phase II metabolic mechanism increasing the molecular solu-

bility and decreasing the molecular bioactivity enabling a detox-

ification process by a rapid excretion. However, in some cases

sulfonation can lead to highly reactive metabolites that are muta-

genic and carcinogenic [19,20]. The known experimental 3D

structures of SULTs (Fig. 1b) show multiple ligands in the binding

site or alternative orientations of the ligands in some isoforms.

Despite the large number of known experimental structures for

SULTs, only a few 3D in silico studies have been reported, probably

owing to the complexity of dealing with a flexible binding site. To

explain the substrate specificities for different isoforms, several

SULT families have been studied by hierarchical clustering of the

binding site structures [99]. Two recent works examined ligand

binding to SULTs with docking methods. Stjernschantz and co-

workers [100] screened 34 potential endocrine-disrupting com-

pounds on the murine and human SULT1E1 to find selective

inhibitors of the human enzyme. The active compounds discov-

ered were docked with GOLD, and subsequent MD simulations of

the docked complexes were performed explaining in part the

selectivity of some of the inhibitors.

To the best of our knowledge the only reported work aiming at

distinguishing between binders and non-binders for SULTs at the

atomic level is a virtual screening study performed with Glide on

SULT1A3 and SULT1E1 [101]. The authors explored the substrate

selectivity profiles for SULT1A3 and SULT1E1 and demonstrated

that docking and/or virtual screening could distinguish preferen-

tial substrate classes for each SULT. However, all results were

obtained on rigid X-ray protein structures and, as suggested by

the authors, it would be important to take into account receptor

flexibility in such 3D profiling more efficiently.

We explored the receptor flexibility of SULT1A1 to take it into

consideration for prediction of ligand binding. We took the X-ray

structure of the protein co-crystallized with the cofactor 30-phos-

phoadenosine 50-phosphate (PAP) and p-nitrophenol (pNP) (PDB
ID: 1LS6). We ran three MD simulations of 2 ns using the

CHARMM program [102] on SULT1A1 in the presence of PAP

and in the absence of ligand. We extracted 4500 structures from

the MD that were then clustered based on the active site with the

hierarchical ascendant classification (HAC) approach implemen-

ted in the R software.

The median structures from the six obtained clusters were

chosen to define a representative set of protein conformations.

For the virtual screening experiments we collected 157 known

substrates of SULT1A1 ([99]; databases: BRENDA, Aureus Sciences).

We clustered the active molecules using the fingerprint FCFP_4

available in Pipeline Pilot v.7.5 (SciTegic, Inc/Accelrys). As decoys

we took the diverse ChemBridgeTM PremiumSetTM and May-

bridge1 HitFinderTM sets. All actives and decoys were filtered with

a soft drug-like filter using the FAF-Drugs 2 server [8]. Finally, we

performed virtual screening experiments with Vina 1.0 [103] on

the representative MD structure set and on the X-ray structure of

SULT1A1 and the 60 diverse actives were merged with the 49,496

putative decoys from the ChemBridgeTM collection or with 13,088

molecules from the Maybridge1 collection.

Figure 3 represents the enrichment graphs obtained for the X-

ray and MD protein conformations. Although the AUC (area under

curve) for the ROC (receiver operating characteristic) curves (not

shown) are better for the virtual screening experiments performed

on the X-ray SULT1A1 than on the selected MD structures, early

enrichment is better on some of the MD structures (up to 30% for

ChemBridgeTM, and up to 50% for Maybridge1). Obtaining earlier

enrichments with some MD extracted structures suggests that it is

important to take into account the flexibility of the binding site of

SULTs. However, further improvements could be achieved for

instance by employing induced-fit approximations, development

of tuned scoring functions and/or the use of interaction finger-

prints. For difficult proteins, combination of docking-scoring,

QSAR and network pharmacology or related approaches [104]

would seem valuable.

Future trends and conclusions
Current in silico ADMET predictions cannot fully replace well-

established in vitro cell-based approaches or in vivo assays but they

can provide significant insights. QSAR ADMET models are widely

used but are limited within the training set chemical space.

Regarding ADMET predictions based on the 3D structures of the

relevant proteins, improvements are still required owing to ambi-

guities in experimental structures and in the biological data used

for validation and inaccuracies in several force-field parameters

and terms. Obviously, the known limitations of docking-scoring

methods are also valid for ADMET proteins. For instance, the

difficulty in taking the contribution of water molecules into

account accurately [25], and known problems with docking-scor-

ing algorithms, and more specifically with scoring functions.

Although it is a common practice to select the docked poses

and to rank compounds using simple scoring functions [29,31],

insufficient correlation between the docked scores and experimen-

tal binding energies are generally observed [29], although some

promising results have also been reported [105,106]. In fact,

different protocols to improve scoring or to compute the free

energy of binding have been investigated and compared to experi-

mental binding data for structurally similar ligands (e.g. for
www.drugdiscoverytoday.com 51
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Enrichment graphs for retrieved actives with VINA docking-scoring performed on the X-ray (in black) and three selected MD structures (in green, blue, violet) for
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CYP2C9) [36]. In addition, a recent study suggests that rigorous

thermodynamic approaches can be useful to predict binding free

energies of structurally diverse ligands for ER [107]. However,

although some approaches are relatively efficient for predicting

binding energy, they tend to be time consuming and are thus

generally applied to a short list of compounds.

It is also worthwhile to note that in the case of enzymatic

reactions most of the experimental data (e.g. Km, Ki) include

kinetic components, whereas only a few parameters, poorly docu-

mented in the literature (e.g. Kd, Ks), purely reflect ligand binding.

Further, ADMET proteins seem to be even more challenging than

many other targets because they are often promiscuous, with
52 www.drugdiscoverytoday.com
flexible and sometimes multiple binding sites. The presently

implemented flexibility approaches (e.g. multiconformational

pocketome [108]) tend to have difficulties in handling this family

of proteins. In addition, for many experimental observations

useful for clinical extrapolation, the involved proteins are

unknown. For instance, intestinal absorption and brain perme-

ability involve many different compound-specific mechanisms.

For such in silico predictions global QSAR approaches can be more

appropriate than protein-based methods.

Despite these limitations, mechanistic understanding of numer-

ous processes through structure-based ADMET investigation

should be within reach in the coming years and efforts are presently
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undertaken in this direction by several groups as illustrated by the

recent study by Obiol-Pardo et al. [86]. A combination of molecular

docking-scoring and MD simulations can help to improve ADMET

properties of drug candidates. We have shown that virtual screening

and MD can be used to predict whether a compound is likely to bind

to SULTs. Moreover, in some cases it is crucial to have access to

protein atomic details for example AGP which exists as a mixture of

two or three genetic variants in the plasma of most individuals.

Indeed, molecules demonstrate considerable differences in binding

the different AGP variants, and distinguishing between the AGP

variants can be done properly only by taking into account the slight

structural and physicochemical properties of the binding site.

ADMET predictions based on combined in silico 3D docking and

modeling with QSAR methods or pharmacophore screening can

help improve the prediction success, as shown in the recently

developed VirtualToxLab concept [10,26] or in the MetaSite match-

ing fingerprints of the binding receptor structure and ligands using

flexible molecular interaction fields [38].

It is worth mentioning that other in silico approaches relevant

for ADMET prediction can be noted as ‘emerging’ because no

extensive studies have been reported but they seem to be clearly

promising for the future. Quantum mechanical and hybrid quan-

tum mechanical/molecular mechanical (QM/MM) methods are

powerful approaches for predicting the rates of reactions in drug

metabolism. Early studies started on homology models of CYP

[109] and lately the resolved 3D structures for several CYP isoforms

enabled the inclusion of the protein environment more precisely.

For instance, the mechanism of benzene hydroxylation was inves-

tigated in the realistic enzyme environment of the human CYP2C9

by using QM/MM calculations of the whole reaction profile [110].

Recently, MD and QM/MM approaches were used to study the
factors influencing the reactivity of compound I for different

CYP450 isoforms [111].

Other approaches that could be relevant for ADMET prediction

involve proteochemometric modeling [112], in which the ligand

and protein descriptors for a series of ligands and a series of

proteins are considered. With this approach it might be possible

to extrapolate the interactions of unknown compounds on known

proteins and vice versa. For instance, proteochemometric model-

ing was applied on 14 CYP isoforms and 375 inhibitors [37]

resulting in the prediction of new potential inhibitors of multiple

CYP isoforms with good accuracy. It is possible that such inves-

tigations could be combined with docking-scoring protocols.

Definitively, advances in structural genomics [113] [i.e. recently

the structure of the human mitochondrial ABC transporter

ABCB10 has been resolved by the Structural Genomics Consor-

tium (http://www.sgc.ox.ac.uk)] and major progression of the

structure-based methods will open new avenues toward ADMET

predictions at the atomic level.

Conflicts of interest
The authors have no conflicts of interest to declare.

Acknowledgements
Support from the French National Research Institute Inserm, the

University Paris Diderot and Servier is greatly appreciated. V.Y.M.

thanks the doctoral school ‘MTCE’ of the Universities Paris

Descartes and Paris Diderot.

Appendix A. Supplementary data
Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.drudis.2011.10.023.
References
1 Merlot, C. (2010) Computational toxicology – a tool for early safety evaluation.

Drug Discov. Today 15, 16–22

2 Michielan, L. and Moro, S. (2010) Pharmaceutical perspectives of nonlinear QSAR

strategies. J. Chem. Inf. Model. 50, 961–978

3 Gleeson, M.P. et al. (2011) In silico ADME models: a general assessment of their

utility in drug discovery applications. Curr. Top. Med. Chem. 11, 358–381

4 van de Waterbeemd, H. and Gifford, E. (2003) ADMET in silico modelling: towards

prediction paradise? Nat. Rev. Drug Discov. 2, 192–204

5 Dobson, P.D. et al. (2009) ‘Metabolite-likeness’ as a criterion in the design and

selection of pharmaceutical drug libraries. Drug Discov. Today 14, 31–40

6 Lipinski, C.A. et al. (2001) Experimental and computational approaches to

estimate solubility and permeability in drug discovery and development settings.

Adv. Drug Deliv. Rev. 46, 3–26

7 Lagorce, D. et al. (2008) FAF-Drugs2: free ADME/tox filtering tool to assist drug

discovery and chemical biology projects. BMC Bioinformatics 9, 396

8 Lagorce, D. et al. (2011) The FAF-Drugs2 server: a multistep engine to prepare

electronic chemical compound collections. Bioinformatics 27, 2018–2020

9 Bhogal, N. et al. (2005) Toxicity testing: creating a revolution based on new

technologies. Trends Biotechnol. 23, 299–307

10 Vedani, A. and Smiesko, M. (2009) In silico toxicology in drug discovery – concepts

based on three-dimensional models. Altern. Lab. Anim. 37, 477–496

11 de Groot, M.J. et al. (1996) A three-dimensional protein model for human

cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and

P450 108. Chem. Res. Toxicol. 9, 1079–1091

12 Ekins, S. et al. (2001) Pharmacophore and three-dimensional quantitative

structure activity relationship methods for modeling cytochrome p450 active

sites. Drug Metab. Dispos. 29, 936–944

13 Stoll, F. et al. (2011) Utility of protein structures in overcoming ADMET-related

issues of drug-like compounds. Drug Discov. Today 16, 530–538
14 Sun, H. and Scott, D.O. (2010) Structure-based drug metabolism predictions for

drug design. Chem. Biol. Drug Des. 75, 3–17

15 Tetko, I.V. et al. (2006) Can we estimate the accuracy of ADME-Tox predictions?

Drug Discov. Today 11, 700–707

16 Cavasotto, C.N. and Singh, N. (2008) Docking and high throughput docking:

successes and the challenge of protein flexibility. Curr. Comput. Aid. Drug Des. 4,

221–234

17 Sperandio, O. et al. (2010) How to choose relevant multiple receptor

conformations for virtual screening: a test case of Cdk2 and normal mode analysis.

Eur. Biophys. J. 39, 1365–1372

18 Isvoran, A. et al. (2011) Exploring NMR ensembles of calcium binding proteins:

perspectives to design inhibitors of protein–protein interactions. BMC Struct. Biol.

11, 24

19 Bojarova, P. and Williams, S.J. (2008) Sulfotransferases, sulfatases and formylglycine-

generating enzymes: a sulfation fascination. Curr. Opin Chem. Biol. 12, 573–581

20 Shimada, T. (2006) Xenobiotic-metabolizing enzymes involved in activation and

detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab.

Pharmacokinet. 21, 257–276

21 Bode, C. (2010) The nasty surprise of a complex drug–drug interaction. Drug

Discov. Today 15, 391–395

22 U.S. Department of Health and Human Services, F.D.A., (1999) Guidance for

Industry, Drug Metabolism/Drug Interaction Studies in the Drug Development Process:

Studies In Vitro. http://www.fda.gov/downloads/Drugs/

GuidanceComplianceRegulatoryInformation/Guidances/ucm072104.pdf

23 Guengerich, F.P. (2008) Cytochrome p450 and chemical toxicology. Chem. Res.

Toxicol. 21, 70–83

24 Clark, S.E. and Jones, B.C. (2002) Human cytochromes P450 and their role in

metabolism-based drug–drug interactions. In Drug–Drug Interactions (Rodrigues,

A.D., ed.), pp. 55–88, Marcel Dekker
www.drugdiscoverytoday.com 53

http://www.sgc.ox.ac.uk/
http://dx.doi.org/10.1016/j.drudis.2011.10.023
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072104.pdf
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072104.pdf


REVIEWS Drug Discovery Today � Volume 17, Numbers 1/2 � January 2012

R
eview

s
�IN

F
O
R
M
A
T
IC
S

25 Zhou, D. et al. (2006) Comparison of methods for the prediction of the

metabolic sites for CYP3A4-mediated metabolic reactions. Drug Metab. Dispos.

34, 976–983

26 Rossato, G. et al. (2010) Probing small-molecule binding to cytochrome P450 2D6

and 2C9: an in silico protocol for generating toxicity alerts. ChemMedChem 5,

2088–2101

27 Park, S.J. et al. (2010) Improved docking, screening and selectivity prediction for

small molecule nuclear receptor modulators using conformational ensembles. J.

Comput. Aid. Mol. Des. 24, 459–471

28 Rowland, P. et al. (2006) Crystal structure of human cytochrome P450 2D6. J. Biol.

Chem. 281, 7614–7622

29 Kemp, C.A. et al. (2004) Validation of model of cytochrome P450 2D6: an in silico

tool for predicting metabolism and inhibition. J. Med. Chem. 47, 5340–5346

30 Bazeley, P.S. et al. (2006) Synergistic use of compound properties and docking

scores in neural network modeling of CYP2D6 binding: predicting affinity and

conformational sampling. J. Chem. Inf. Model. 46, 2698–2708

31 de Graaf, C. et al. (2006) Catalytic site prediction and virtual screening of

cytochrome P450 2D6 substrates by consideration of water and rescoring in

automated docking. J. Med. Chem. 49, 2417–2430

32 Santos, R. et al. (2010) Role of water in molecular docking simulations of

cytochrome P450 2D6. J. Chem. Inf. Model. 50, 146–154

33 Hritz, J. et al. (2008) Impact of plasticity and flexibility on docking results for

cytochrome P450 2D6: a combined approach of molecular dynamics and ligand

docking. J. Med. Chem. 51, 7469–7477

34 Unwalla, R.J. et al. (2010) Using a homology model of cytochrome P450 2D6 to

predict substrate site of metabolism. J. Comput. Aid. Mol. Des. 24, 237–256

35 Shi, R. et al. (2011) Exploration of the binding of proton pump inhibitors to human

P450 2C9 based on docking and molecular dynamics simulation. J. Mol. Model. 17,

1941–1951

36 Stjernschantz, E. and Oostenbrink, C. (2010) Improved ligand-protein binding

affinity predictions using multiple binding modes. Biophys. J. 98, 2682–2691

37 Kontijevskis, A. et al. (2008) Generalized proteochemometric model of multiple

cytochrome p450 enzymes and their inhibitors. J. Chem. Inf. Model. 48, 1840–

1850

38 Cruciani, G. et al. (2005) MetaSite: understanding metabolism in human

cytochromes from the perspective of the chemist. J. Med. Chem. 48, 6970–6979

39 Daly, A.K. (2003) Pharmacogenetics of the major polymorphic metabolizing

enzymes. Fundam. Clin. Pharmacol. 17, 27–41

40 Williams, J.A. et al. (2004) Drug-drug interactions for UDP-glucuronosyltransferase

substrates: a pharmacokinetic explanation for typically observed low exposure

(AUCi/AUC) ratios. Drug Metab. Dispos. 32, 1201–1208

41 Smith, P.A. et al. (2004) Towards integrated ADME prediction: past, present and

future directions for modelling metabolism by UDP-glucuronosyltransferases. J.

Mol. Graph Model. 22, 507–517

42 Cucurull-Sanchez, L. (2010) Successful identification of key chemical structure

modifications that lead to improved ADME profiles. J. Comput. Aid. Mol. Des. 24,

449–458

43 Miley, M.J. et al. (2007) Crystal structure of the cofactor-binding domain of the

human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. J.

Mol. Biol. 369, 498–511

44 Shao, H. et al. (2005) Crystal structures of a multifunctional triterpene/flavonoid

glycosyltransferase from Medicago truncatula. Plant Cell 17, 3141–3154

45 Wu, B. et al. (2011) Three-dimensional quantitative structure–activity relationship

studies on UGT1A9-mediated 3-O-glucuronidation of natural flavonols using a

pharmacophore-based comparative molecular field analysis model. J. Pharmacol.

Exp. Ther. 336, 403–413

46 Krasowski, M.D. et al. (2011) Evolution of promiscuous nuclear hormone

receptors: LXR, FXR, VDR, PXR, and CAR. Mol. Cell. Endocrinol. 334, 39–48

47 Savas, U. et al. (1999) Molecular mechanisms of cytochrome P-450 induction by

xenobiotics: an expanded role for nuclear hormone receptors. Mol. Pharmacol. 56,

851–857

48 Ngan, C.H. et al. (2009) The structural basis of pregnane X receptor binding

promiscuity. Biochemistry 48, 11572–11581

49 Ekins, S. et al. (2009) Challenges predicting ligand–receptor interactions of

promiscuous proteins: the nuclear receptor PXR. PLoS Comput. Biol. 5, e1000594

50 Liu, Y.H. et al. (2011) Regulation of human pregnane X receptor and its target gene

cytochrome P450 3A4 by Chinese herbal compounds and a molecular docking

study. Xenobiotica 41, 259–280

51 Baes, M. et al. (1994) A new orphan member of the nuclear hormone receptor

superfamily that interacts with a subset of retinoic acid response elements. Mol.

Cell. Biol. 14, 1544–1552

52 Xu, R.X. et al. (2004) A structural basis for constitutive activity in the human CAR/

RXRalpha heterodimer. Mol. Cell 16, 919–928
54 www.drugdiscoverytoday.com
53 Windshugel, B. et al. (2005) Molecular dynamics simulations of the human CAR

ligand-binding domain: deciphering the molecular basis for constitutive activity.

J. Mol. Model. 11, 69–79
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